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Abstract 

The synthesis and application of new chiral amino acids (AAs) and peptides derived 

thereof is research topic of major importance. The introduction of g-AA as building blocks 

is useful for the development of original chiral small molecules and heterocycles, enabling 

exploration of 3D chemical space in search of selectivity in biological properties. 4.5-Di-

hydro-2H-pyridazin-3-ones (DHPDOs) are 6-membered aza-heterocycles considered as 

masked g-AA analogues. We herein report on the synthesis of various a-monosubstituted 

DHPDOs as platform-molecules using Meldrum’s acid chemistry and the a-functionali-

zation approach upon the asymmetric Michael addition using the Phase-Transfer Cataly-

sis (PTC). 

Keywords: organic chemistry; Meldrum’s acid; asymmetric synthesis; phase-transfer  

catalysis; gamma amino acids 

 

1. Introduction 

Compared to classical a-amino acids (a-Aas), the introduction of g-AA derivatives 

into the corresponding peptidomimetics leads different secondary structures and im-

proved hydrolytic stability towards peptidases, thus providing altered and sometimes 

better biological properties/activities [1]. 

For example, γ-aminobutyric acid (GABA) is the simplest g-AA and the main inhib-

itory neurotransmitter in the mammalian central nervous system, which is involved in 

several brain disorders such as neuropathic pain, Alzheimer’s disease, Parkinson’s dis-

ease. For these reasons, the signaling modulation of GABA is the basis of many pharma-

cologic treatments [2]. The therapeutic properties of g-AA derivatives in enantiomerically 

pure form have encouraged organic chemists to develop several procedures for their en-

antioselective synthesis. The construction of a-disubstituted g-AA derivatives remain 

challenging and furthermore the elaboration of g-AA with a tetra-substituted stereocenter 

is not a trivial task [3]. Moreover, a-disubstituted g-AA derivatives are also useful build-

ing blocks for the elaboration of original chiral small molecules and heterocycles allowing 

the exploration of the 3D-chemical space in search of selectivity in biological properties 

and prevent any racemization event [1,4,5]. 4,5-Dihydro-2H-pyridazin-3-one (DHPDO) 

scaffolds are important 6-membered aza-heterocycles and are widely used as key building 
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blocks in many biologically active molecules and therapeutic agents, with a wide range of 

pharmacological and medicinal properties. Some of them have been used in commercial 

pharmaceuticals and agrochemicals [6,7]. 

Unsurprisingly, many research groups have developed asymmetric catalytic synthe-

ses of DHPDO derivatives that are either mono-substituted at the C5- or the C4-position 

(a-position of the carbonyl functionality) [8,9]. In this respect, several of these heterocycles 

of potential medical interest contain one or two substituents at the C4-position [10]. How-

ever, to our knowledge, the asymmetric catalytic synthesis of a,a-disubstituted DHPDO 

derivatives containing a quaternary stereogenic center has not yet been addressed [12]. 

Thus, the development of reliable strategies that provide easy access to different a-func-

tionalized DHPDOs, even asymmetrically, is a laudable goal. 

In accordance with the value mentioned above for chiral 4,5-dihydro-2H-pyridazin-

3-ones, we have now set ourselves the goal of establishing a robust synthetic pathway for 

obtaining various a-functionalized DHPDOs. We also present a strategy that involves the 

asymmetric quaternary ammonium salt phase-transfer catalyzed Michael addition reac-

tion of a-monosubstituted DHPDOs. 

2. Results and Discussion 

Our synthetic plan was based on the elaboration of various a-functionalized 

DHPDOs 3 from hydrazine and Meldrum’s acid chemistry, i.e., making use of derivatives 

1. The readily accessible compounds 1 were expected to enable the construction of appro-

priately C5-disubstituted Meldrum’s acid derivatives 2, precursors for the synthesis of 

DHPDOs 3–4 after treatment with hydrazine. Finally, after a suited N-protection to mod-

ulate the reactivity of DHPDO compound 4, we investigated the asymmetric organocata-

lytic a-functionalization with different Michael acceptors under chiral ammonium salt 

phase transfer conditions for the construction of new heterocyclic derivatives 6 (Scheme 

1). 

 

Scheme 1. Synthetic route enabling the obtention of new a-disubstituted heterocyclic derivatives. 

2.1. Synthesis of N-Boc DHPDO Derivatives 4 

The synthesis of the C5-alkyl Meldrum’s acid derivatives 1a–d was easily achieved 

following the methodology of Ramachary and collaborators [12]. 

For the elaboration of NH-DHPDO derivatives 3, we based our methodology on the 

contribution of Tόth and collaborators, starting from the monosubstituted Meldrum’s acid 

derivatives 1 (Scheme 2A) [13]. First, the C5-disubstituted Meldrum’s acid derivatives 2 

are obtained by alkylating 1 using 2-bromoacetophenone under basic conditions. Then, 
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the NH-DHPDO derivatives 3 were obtained by the condensation of hydrazine at room 

temperature. Finally, the free NH-DHPDO derivatives 3 were N-protected using tert-

butoxycarbonyl anhydride (Scheme 2B). 

 

Scheme 2. Synthesis of N-Boc DHPDO derivatives. 

2.2. α-Functionalization of N-Boc DHPDO Derivatives 4 

We were next interested in the asymmetric α-functionalization of N-Boc DHPDO de-

rivatives 4 using the spirobiindane-based salt A [14]. The optimization was performed 

using the heterocycle 4a, methyl acrylate 5a as an acceptor and cesium carbonate as a sim-

ple inorganic base (Table 1). 

Table 1. Optimization of ammonium salt (A)-catalyzed Michael addition of N-Boc DHPDO 4a to 

methyl acrylate 5a 1. 

 

Entry Solvent Cs2CO3 (eq.) Time (h) Conv. (%) 2 6a (%) 3 e.r. 4 

1 CH2Cl2 1.5 3 90 85 36:64 

2 THF 1.5 3 95 50 42:58 

3 toluene 1.5 3 30 25 10:90 

4 toluene 1.5 18 80 75 15:85 

5 toluene 1.5 40 100 95 18:82 

6 toluene 3 18 100 95 (54) 19:81 

1 All reactions were run using 0.1 mmol 4a, 0.3 mmol 5, the indicated base in the given solvent (0.1 

M) at room temperature unless otherwise stated. 2 Based on remaining 4a calculated from the 1H 

NMR spectrum of the crude product using nitromethane as an internal standard (rounded in 
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increments of 5%). 3 NMR yields using nitromethane as an internal standard (rounded in increments 

of 5%)—isolated yields given in brackets. 4 Determined by HPLC using a chiral stationary phase, 

given in order of retention. 

The use of toluene as solvent allowed us to achieve a good enantioselectivity (90:10 

e.r.) but with a low conversion of 30% (entry 3). Preliminary investigation showed that 

these conditions surpassed the outcomes in THF and CH2Cl2 (entries 1–2). Then, by in-

creasing the time of reaction to 18 and 40 h, we obtained better conversion but with a 

decrease in enantioselectivity as low as 18:82 e.r. (entry 4–5). This observation could be 

interpreted by counter-cation exchange or a catalyst degradation. Using a larger excess of 

base, product 5a was obtained with a high NMR yield of 95% and a moderate enantiose-

lectivity (19:81 e.r., entry 6). Worthy of note, a lower isolated yield than that forecast based 

on the NMR yield was obtained. It can be explained by a partial retro-Michael addition 

after the purification by normal-phase silica gel column chromatography (a notable 

amount of starting material 4a was recovered). 

The conditions depicted in entry 6 represent a fair compromise between conversion 

and enantioselectivity. Then, we tackled the exemplification of this method testing various 

a-substituted N-Boc DHPDOs and methyl vinylketone 5b as an acceptor (Scheme 3). 

 

Scheme 3. Application scope for the asymmetric 1,4-addition of N-Boc DHPDOs 4 to Michael ac-

ceptors 5. 

The use of acceptor 5b (R1 = Me) gave the product 6e with a low enantioselectivity 

(42:58 e.r.) despite a high yield of 90%. Then, a-substituted N-Boc DHPDO derivatives 

were investigated using methyl acrylate 5a as acceptors giving products 6b–c, having ben-

zylated pendants, with yields ranging from 44% to 55% and up to 30:70 e.r. Unfortunately, 

we obtained modest enantioselectivities (59:41 e.r.) combined with a lower yield (14%) for 

compound 6d having a longer alkyl chain (R = PhC2H4). 

3. Conclusions 

We successfully developed a methodology to access α-functionalized 4,5-dihydro-

2H-pyridazin-3-ones using Meldrum’s acid chemistry. Subsequently, we developed a 

new methodology based on asymmetric Michael addition reaction employing Phase-

Transfer Catalysis. This resulted in the formation of novel α,α-disubstituted pyridazinone 
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derivatives, which contain a quaternary stereocenter and had not been previously ad-

dressed. 
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