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Abstract

The synthesis and application of new chiral amino acids (AAs) and peptides derived
thereof is research topic of major importance. The introduction of g-AA as building blocks
is useful for the development of original chiral small molecules and heterocycles, enabling
exploration of 3D chemical space in search of selectivity in biological properties. 4.5-Di-
hydro-2H-pyridazin-3-ones (DHPDOs) are 6-membered aza-heterocycles considered as
masked g-AA analogues. We herein report on the synthesis of various a-monosubstituted
DHPDOs as platform-molecules using Meldrum’s acid chemistry and the a-functionali-
zation approach upon the asymmetric Michael addition using the Phase-Transfer Cataly-
sis (PTC).

Keywords: organic chemistry; Meldrum’s acid; asymmetric synthesis; phase-transfer
catalysis; gamma amino acids

1. Introduction

Compared to classical a-amino acids (a-Aas), the introduction of g-AA derivatives
into the corresponding peptidomimetics leads different secondary structures and im-
proved hydrolytic stability towards peptidases, thus providing altered and sometimes
better biological properties/activities [1].

For example, y-aminobutyric acid (GABA) is the simplest g-AA and the main inhib-
itory neurotransmitter in the mammalian central nervous system, which is involved in
several brain disorders such as neuropathic pain, Alzheimer’s disease, Parkinson’s dis-
ease. For these reasons, the signaling modulation of GABA is the basis of many pharma-
cologic treatments [2]. The therapeutic properties of g-AA derivatives in enantiomerically
pure form have encouraged organic chemists to develop several procedures for their en-
antioselective synthesis. The construction of a-disubstituted g-AA derivatives remain
challenging and furthermore the elaboration of g-AA with a tetra-substituted stereocenter
is not a trivial task [3]. Moreover, a-disubstituted g-AA derivatives are also useful build-
ing blocks for the elaboration of original chiral small molecules and heterocycles allowing
the exploration of the 3D-chemical space in search of selectivity in biological properties
and prevent any racemization event [1,4,5]. 4,5-Dihydro-2H-pyridazin-3-one (DHPDO)
scaffolds are important 6-membered aza-heterocycles and are widely used as key building
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blocks in many biologically active molecules and therapeutic agents, with a wide range of
pharmacological and medicinal properties. Some of them have been used in commercial
pharmaceuticals and agrochemicals [6,7].

Unsurprisingly, many research groups have developed asymmetric catalytic synthe-
ses of DHPDO derivatives that are either mono-substituted at the C5- or the C4-position
(a-position of the carbonyl functionality) [8,9]. In this respect, several of these heterocycles
of potential medical interest contain one or two substituents at the C4-position [10]. How-
ever, to our knowledge, the asymmetric catalytic synthesis of a,a-disubstituted DHPDO
derivatives containing a quaternary stereogenic center has not yet been addressed [12].
Thus, the development of reliable strategies that provide easy access to different a-func-
tionalized DHPDOs, even asymmetrically, is a laudable goal.

In accordance with the value mentioned above for chiral 4,5-dihydro-2H-pyridazin-
3-ones, we have now set ourselves the goal of establishing a robust synthetic pathway for
obtaining various a-functionalized DHPDOs. We also present a strategy that involves the
asymmetric quaternary ammonium salt phase-transfer catalyzed Michael addition reac-
tion of a-monosubstituted DHPDOs.

2. Results and Discussion

Our synthetic plan was based on the elaboration of various a-functionalized
DHPDOs 3 from hydrazine and Meldrum’s acid chemistry, i.e., making use of derivatives
1. The readily accessible compounds 1 were expected to enable the construction of appro-
priately C5-disubstituted Meldrum’s acid derivatives 2, precursors for the synthesis of
DHPDOs 3-4 after treatment with hydrazine. Finally, after a suited N-protection to mod-
ulate the reactivity of DHPDO compound 4, we investigated the asymmetric organocata-
lytic a-functionalization with different Michael acceptors under chiral ammonium salt
phase transfer conditions for the construction of new heterocyclic derivatives 6 (Scheme

1).
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Scheme 1. Synthetic route enabling the obtention of new a-disubstituted heterocyclic derivatives.

2.1. Synthesis of N-Boc DHPDO Derivatives 4

The synthesis of the C5-alkyl Meldrum’s acid derivatives 1a-d was easily achieved
following the methodology of Ramachary and collaborators [12].

For the elaboration of NH-DHPDO derivatives 3, we based our methodology on the
contribution of Téth and collaborators, starting from the monosubstituted Meldrum'’s acid
derivatives 1 (Scheme 2A) [13]. First, the C5-disubstituted Meldrum’s acid derivatives 2
are obtained by alkylating 1 using 2-bromoacetophenone under basic conditions. Then,
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the NH-DHPDO derivatives 3 were obtained by the condensation of hydrazine at room
temperature. Finally, the free NH-DHPDO derivatives 3 were N-protected using fert-
butoxycarbonyl anhydride (Scheme 2B).

@ Synthesis of NH-DHPDO derivatives
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Conditions (a) AcONa (1.05 equiv.), AcOH (1 equiv.), DMF, 20 °C, 24 h. (b) NoH4.H,0
(4 equiv.), DMF, 20 °C, 24 h. (c) Boc,0 (1.2 equiv.), DMAP (0.2 equiv.), DCM, 20 °C, 19 h.

Scheme 2. Synthesis of N-Boc DHPDO derivatives.

2.2. a-Functionalization of N-Boc DHPDO Derivatives 4

We were next interested in the asymmetric a-functionalization of N-Boc DHPDO de-
rivatives 4 using the spirobiindane-based salt A [14]. The optimization was performed
using the heterocycle 4a, methyl acrylate 5a as an acceptor and cesium carbonate as a sim-
ple inorganic base (Table 1).

Table 1. Optimization of ammonium salt (A)-catalyzed Michael addition of N-Boc DHPDO 4a to
methyl acrylate 5a .

N
Nx

A (10 mol?
. A(OMe (10 mol%)

F 0 Cs,CO4
‘ Sol\{ent
20°C, time (h)
4a 5a

Entry Solvent Cs2CO:s (eq.) Time (h) Conv. (%) 2 6a (%) 3 er.*
1 CH2Cl2 1.5 3 90 85 36:64
2 THF 1.5 3 95 50 42:58
3 toluene 1.5 3 30 25 10:90
4 toluene 15 18 80 75 15:85
5 toluene 1.5 40 100 95 18:82
6 toluene 3 18 100 95 (54) 19:81

I All reactions were run using 0.1 mmol 4a, 0.3 mmol 5, the indicated base in the given solvent (0.1
M) at room temperature unless otherwise stated. 2 Based on remaining 4a calculated from the 'H
NMR spectrum of the crude product using nitromethane as an internal standard (rounded in
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increments of 5%). 3 NMR yields using nitromethane as an internal standard (rounded in increments
of 5%)—isolated yields given in brackets. + Determined by HPLC using a chiral stationary phase,

given in order of retention.

The use of toluene as solvent allowed us to achieve a good enantioselectivity (90:10
e.r.) but with a low conversion of 30% (entry 3). Preliminary investigation showed that
these conditions surpassed the outcomes in THF and CH:Cl: (entries 1-2). Then, by in-
creasing the time of reaction to 18 and 40 h, we obtained better conversion but with a
decrease in enantioselectivity as low as 18:82 e.r. (entry 4-5). This observation could be
interpreted by counter-cation exchange or a catalyst degradation. Using a larger excess of
base, product 5a was obtained with a high NMR yield of 95% and a moderate enantiose-
lectivity (19:81 e.r., entry 6). Worthy of note, a lower isolated yield than that forecast based
on the NMR yield was obtained. It can be explained by a partial retro-Michael addition
after the purification by normal-phase silica gel column chromatography (a notable
amount of starting material 4a was recovered).

The conditions depicted in entry 6 represent a fair compromise between conversion
and enantioselectivity. Then, we tackled the exemplification of this method testing various
a-substituted N-Boc DHPDOs and methyl vinylketone 5b as an acceptor (Scheme 3).
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6e (R'= Me): 90% (95% NMR); 42:58 e.r. 6¢ (R = Np-1-yl): 44% (60% NMR); 30:70 e.r.

6d (R = PhC,H,): 14% (30% NMR); 59:41 e r.

Scheme 3. Application scope for the asymmetric 1,4-addition of N-Boc DHPDOs 4 to Michael ac-

ceptors 5.

The use of acceptor 5b (R' = Me) gave the product 6e with a low enantioselectivity
(42:58 e.r.) despite a high yield of 90%. Then, a-substituted N-Boc DHPDO derivatives
were investigated using methyl acrylate 5a as acceptors giving products 6b—c, having ben-
zylated pendants, with yields ranging from 44% to 55% and up to 30:70 e.r. Unfortunately,
we obtained modest enantioselectivities (59:41 e.r.) combined with a lower yield (14%) for
compound 6d having a longer alkyl chain (R = PhC2Ha).

3. Conclusions

We successfully developed a methodology to access a-functionalized 4,5-dihydro-
2H-pyridazin-3-ones using Meldrum’s acid chemistry. Subsequently, we developed a
new methodology based on asymmetric Michael addition reaction employing Phase-
Transfer Catalysis. This resulted in the formation of novel o, a-disubstituted pyridazinone
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derivatives, which contain a quaternary stereocenter and had not been previously ad-
dressed.
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