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Abstract 

Recently published halogenated anilides of chlorinated and trifluorinated cinnamic acids, 

such as (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop- 

2-enamide, (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide or 

(2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enamide, 

showed excellent antibacterial activities in vitro against Gram-positive bacteria, especially 

against reference and quality control strains Staphylococcus aureus ATCC 29213, Enterococ-

cus faecalis ATCC 29212, as well as against representatives of multidrug-resistant bacteria 

and clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. 

faecalis (VRE) with minimum inhibitory concentrations (MICs) against staphylococci <0.2 

µg/mL and against enterococci < 4 µg/mL. It should be noted that all these compounds 

are rather lipophilic (software predicted log p values close to 5) and carry electron-with-

drawing substituents that allow them to be classified as so-called Michael acceptors. All 

these facts inspired further investigation of the spectrum of effectiveness against other 

bacteria, and the most effective agents with various substitutions in both the anilide part 

and on the phenyl ring of the parent cinnamic acid were chosen and tested against se-

lected pathogenic Gram-negative bacteria, such as reference and quality control strains 

Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27859 and clinical isolate of 

Klebsiella pneumoniae 797. Unfortunately, it was found that none of the selected halogen-

ated anilide derivatives with such high potency against Gram-positive bacteria demon-

strated better efficacy against the tested Gram-negative bacteria than MICs 256 µg/mL. 
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1. Introduction 

Antimicrobial resistance (AMR) is a serious problem that threatens the effectiveness 

of treatments for infections caused by bacteria, viruses, fungi and parasites. The greatest 
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burden and cost in healthcare is associated with bacterial resistance to antibiotics [1–3]. 

According to estimates from 2021, approximately 4.71 million deaths were associated with 

AMR, of which 1.14 million were directly caused by bacteria [4]. Moreover, AMR also 

poses a critical threat to the global economy and could cost up to $100 trillion by 2050 [5]. 

The World Health Organization (WHO) responded to this problem in 2015 with the 

Global Action Plan on Antimicrobial Resistance [6]. In 2017, WHO published the Bacterial 

Pathogens Priority List (BPPL), which classified 25 antibiotic-resistant pathogens into 

three priority levels: critical, high, and medium [7]. The list was designed to focus research 

and development of new antibacterial agents and to streamline the monitoring of AMR 

[3,5,8,9]. In 2024, the WHO updated the list, but the leading places are still occupied by 

resistant strains of bacteria such as Klebsiella pneumoniae, Escherichia coli, Acinetobacter bau-

mannii, Staphylococcus aureus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Neisseria 

gonorrhoeae, Enterococcus sp., Salmonella sp., Shigella sp. and others [10]. Despite increasing 

research efforts in the field of antimicrobial resistance, progress in the development of 

new drugs is stagnant [11–15]. 

To overcome antimicrobial resistance, the development of new agents with innova-

tive mechanisms of action is essential [16–18]. One promising strategy is to take inspira-

tion from natural compounds [19–21] and modify them into so-called multi-target agents. 

These agents, in contrast to single-target agents, are more effective in combating the de-

velopment of resistance [22–24]. Cinnamic acid, which has a long history of human use, 

has been used as a scaffold for new compounds [25–27]. From it, novel anilides, specifi-

cally diverse series of halogenated cinnamanilides, have been designed. These com-

pounds were prepared, and tested for their efficacy against a variety of pathogens, includ-

ing bacteria, mycobacteria, and protozoa [28–34]. Some of these compounds have been 

shown to be highly effective against Gram-positive bacteria [28,30,31], and therefore their 

research has been extended to Gram-negative bacteria. This article summarizes the find-

ings on the effect of halogenated cinnamanilides against selected Gram-negative bacteria. 

2. Results and Discussion 

The discussed anilides were synthesized using microwave-assisted synthesis as 

shown in Scheme 1 and described by Kos and Strharsky [28–32]. Reaction of ring-substi-

tuted cinnamic acids with appropriately substituted anilines using phosphorus trichloride 

in chlorobenzene afforded anilides 1–23, the structures of which are listed in Table 1. 

 

Scheme 1. Synthesis of ring-substituted cinnamanilides 1–23. Reagents and conditions: (a) PCl3, chlo-

robenzene, MW. 

All compounds presented in this contribution have been recently tested in vitro 

against Gram-positive bacteria and mycobacteria. First, universally susceptible collection 

strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 were se-

lected. The second aspect of strain selection was the current status of strains with epide-

miologically relevant resistance patterns, represented by clinical isolates, e.g., methicillin-

resistant S. aureus (MRSA) isolates and vancomycin-resistant E. faecalis (VRE) isolates. In 

addition, all compounds were tested in vitro against fast and slow growing mycobacterial 

strains. In general, the minimum inhibitory concentrations (MICs) against Staphylococcus 
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strains were <0.2 µg/mL and against facultatively anaerobic enterococci the MICs were <4 

µg/mL [28–32]. It is important to note that all of these effective agents were bactericidal. 

Due to the problematic search for active agents against Gram-negative bacteria, and 

the excellent results of these compounds on Gram-positive bacteria, it was decided to test 

the most effective derivatives also on selected Gram-negative pathogens. The selection of 

bacteria was carried out in the context of BPPL [10] and the reference strains (from Amer-

ican Type Culture Collection (ATCC) [35]) Escherichia coli ATCC 25922, Pseudomonas aeru-

ginosa ATCC 27859 and the clinical isolate Klebsiella pneumoniae 797 (from the collection of 

the Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, 

Veterinary University Brno, Czech Republic) [36] were selected for primary screening. The 

results of the investigation are presented in Table 1, the activities are expressed as MICs. 

Table 1. Structures of ring-substituted cinnamanilides 1–23 and antibacterial activities against se-

lected Gram-negative bacteria. 

 

No. R1 R2 
MIC [µg/mL] 

E. coli ATCC 25922 P. aeruginosa ATCC 27859 K. pneumoniae 797 

1 H 3-CF3 >256 >256 >256 

2 H 3,4-Cl >256 >256 >256 

3 H 3,5-Cl >256 >256 >256 

4 H 3,5-CF3 >256 >256 >256 

5 H 
3-F-4-

CF3 
>256 >256 >256 

6 4-Cl 3-CF3 >256 >256 >256 

7 4-Cl 4-CF3 >256 >256 >256 

8 4-Cl 3,5-Cl >256 >256 >256 

9 4-Cl 3,5-CF3 >256 >256 >256 

10 3,4-Cl 3,5-CF3 >256 >256 >256 

11 2-CF3 3-CF3 >256 >256 >256 

12 2-CF3 4-CF3 >256 >256 >256 

13 2-CF3 3,5-Cl >256 >256 >256 

14 2-CF3 3,5-CF3 >256 >256 >256 

15 2-CF3 4-OCF3 >256 >256 >256 

16 3-CF3 3-CF3 >256 >256 >256 

17 3-CF3 4-CF3 >256 >256 >256 

18 3-CF3 3,5-Cl >256 >256 >256 

19 3-CF3 3,5-CF3 >256 >256 >256 

20 4-CF3 3-CF3 >256 >256 >256 

21 4-CF3 4-CF3 >256 >256 >256 

22 4-CF3 3,5-Cl >256 >256 >256 

23 4-CF3 3,5-CF3 >256 >256 >256 

ciprofloxacin 0.125 0.125 1.00 

It is evident that the compounds in Table 1 did not show activity against Gram-neg-

ative bacteria, as their MIC values were 256 µg/mL or higher. However, the effect of cin-

namic acid derivatives on Gram-negative bacteria has been reported in the literature. De-

pending on the used test method, the bacteria (E. coli, P. aeruginosa, K. pneumoniae) and 

evaluated compounds (ring-substituted acid, ester or amide), the activity varies in a wide 

range of MIC values from 1 to >1000 µg/mL [37–39]. 
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Ferulic and sinapic acids at 1000 µg/mL inhibited quorum sensing (QS), significantly 

impaired biofilm formation, and reduced virulence of P. aeruginosa [40]. Rajkumari et al. 

also confirmed that cinnamic acid alone at a sublethal concentration of 250 µg/mL effec-

tively inhibited both the production of QS-dependent virulence factors and biofilm for-

mation in P. aeruginosa without affecting bacterial viability [41]. Cinnamoyl hydroxamates 

have been reported as potential inhibitors of QS and biofilm formation of P. aeruginosa at 

concentrations of approximately 300 µg/mL [42]. It is true that testing any compounds at 

such high concentrations can be controversial. On the other hand, this approach allows us 

to determine whether the compounds show at least some activity against Gram-negative 

bacteria. Although it is clear that no substances with clinically relevant efficacy have been 

found, testing on such a large scale can provide valuable insights, e.g., on the threshold of 

action or the nature of resistance. The results obtained can thus serve as a starting point 

for further research. 

In this study, derivatives were evaluated up to a meaningful concentration of 256 

µg/mL. This low potency compared to the high activity against Gram-positive bacteria 

raises the question of whether these compounds lack intrinsic antibacterial activity or 

whether there are other factors that prevent their action, such as (i) limited permeability 

into the cell of Gram-negative bacteria [43] or (ii) becoming a substrate for efflux trans-

porters [44]. Cinnamic acid derivatives have been described as inhibitors of efflux pumps 

in Gram-positive bacteria [45], but are substrates for efflux pumps in Gram-negative bac-

teria [46]. Similarly, the complexity of the cell wall of Gram-negative bacteria is known to 

provide an effective barrier against good permeability [43] of antibiotics. Therefore it is 

possible that the tested cinnamanilides are effective (have intrinsic activity) but cannot 

reach their target or effective concentration inside the Gram-negative bacterial cell. Fur-

ther tests, for example using efflux pump inhibitors or membrane permeability assays, 

will be necessary to confirm this hypothesis. 

3. Experimental Section 

3.1. Chemistry 

All discussed ring-substituted (2E)-N-aryl-3-phenylprop-2-enamides 1–5 [27,28], 

(2E)-3-(4-chlorophenyl)-N-arylprop-2-enanilides and (2E)-3-(3,4-dichlorophenyl)-N-aryl- 

prop-2-enanilides 6–10 [29], trifluoromethylcinnamanilide 11–23 [30,31] were previously 

prepared and characterized. 

3.2. In Vitro Antibacterial Evaluation 

In vitro antibacterial activity of the synthesized compounds was evaluated against 

representatives of Gram-negative bacteria: Escherichia coli ATCC 25922, Pseudomonas aeru-

ginosa ATCC 27859 [35] and clinical isolate of human origin Klebsiella pneumoniae 797 (from 

the collection of the Department of Infectious Diseases and Microbiology, Faculty of Vet-

erinary Medicine, Veterinary University Brno, Czech Republic) [36]. The minimum inhib-

itory concentrations (MICs) were evaluated by the microtitration broth method according 

to the Clinical and Laboratory Standards Institute (CLSI) [47,48] with some modifications, 

as detailed in Markuliak et al. [49]. The results are summarized in Table 1. 

4. Conclusions 

Twenty-three differently halogenated cinnamic acid anilides, which were highly ac-

tive against Gram-positive bacteria, were evaluated by the microtiter broth method 

against the reference strains E. coli ATCC 25922, P. aeruginosa ATCC 27859 and the clinical 

isolate K. pneumoniae 797. Their MIC values were >256 µg/mL, so they did not cause any 

real observable growth/viability inhibition of these Gram-negative bacteria. Additional 
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experiments are needed to gain a deeper understanding of the expected activity activities 

of these agents, such as inhibition of quorum sensing and virulence, or to verify their in-

trinsic antibacterial activity (e.g., synergism with efflux pump inhibitors or with com-

pounds affecting membrane permeability). 
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