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Abstract

Recently published halogenated anilides of chlorinated and trifluorinated cinnamic acids,
such as (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-

2-enamide, (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide or
(2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enamide,
showed excellent antibacterial activities in vitro against Gram-positive bacteria, especially
against reference and quality control strains Staphylococcus aureus ATCC 29213, Enterococ-
cus faecalis ATCC 29212, as well as against representatives of multidrug-resistant bacteria
and clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E.
faecalis (VRE) with minimum inhibitory concentrations (MICs) against staphylococci <0.2
ug/mL and against enterococci < 4 pug/mL. It should be noted that all these compounds
are rather lipophilic (software predicted log p values close to 5) and carry electron-with-
drawing substituents that allow them to be classified as so-called Michael acceptors. All
these facts inspired further investigation of the spectrum of effectiveness against other
bacteria, and the most effective agents with various substitutions in both the anilide part
and on the phenyl ring of the parent cinnamic acid were chosen and tested against se-
lected pathogenic Gram-negative bacteria, such as reference and quality control strains
Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27859 and clinical isolate of
Klebsiella pneumoniae 797. Unfortunately, it was found that none of the selected halogen-
ated anilide derivatives with such high potency against Gram-positive bacteria demon-
strated better efficacy against the tested Gram-negative bacteria than MICs 256 pig/mL.

Keywords: halogenated cinnamanilides; synthesis; Gram-negative bacteria; antibacterial
activity

1. Introduction

Antimicrobial resistance (AMR) is a serious problem that threatens the effectiveness
of treatments for infections caused by bacteria, viruses, fungi and parasites. The greatest

Chem. Proc. 2025, x, x

https://doi.org/10.3390/xxxxx



Chem. Proc. 2025, x, x FOR PEER REVIEW 20of 7

burden and cost in healthcare is associated with bacterial resistance to antibiotics [1-3].
According to estimates from 2021, approximately 4.71 million deaths were associated with
AMR, of which 1.14 million were directly caused by bacteria [4]. Moreover, AMR also
poses a critical threat to the global economy and could cost up to $100 trillion by 2050 [5].

The World Health Organization (WHO) responded to this problem in 2015 with the
Global Action Plan on Antimicrobial Resistance [6]. In 2017, WHO published the Bacterial
Pathogens Priority List (BPPL), which classified 25 antibiotic-resistant pathogens into
three priority levels: critical, high, and medium [7]. The list was designed to focus research
and development of new antibacterial agents and to streamline the monitoring of AMR
[3,5,8,9]. In 2024, the WHO updated the list, but the leading places are still occupied by
resistant strains of bacteria such as Klebsiella pneumoniae, Escherichia coli, Acinetobacter bau-
mannii, Staphylococcus aureus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Neisseria
gonorrhoeae, Enterococcus sp., Salmonella sp., Shigella sp. and others [10]. Despite increasing
research efforts in the field of antimicrobial resistance, progress in the development of
new drugs is stagnant [11-15].

To overcome antimicrobial resistance, the development of new agents with innova-
tive mechanisms of action is essential [16-18]. One promising strategy is to take inspira-
tion from natural compounds [19-21] and modify them into so-called multi-target agents.
These agents, in contrast to single-target agents, are more effective in combating the de-
velopment of resistance [22-24]. Cinnamic acid, which has a long history of human use,
has been used as a scaffold for new compounds [25-27]. From it, novel anilides, specifi-
cally diverse series of halogenated cinnamanilides, have been designed. These com-
pounds were prepared, and tested for their efficacy against a variety of pathogens, includ-
ing bacteria, mycobacteria, and protozoa [28-34]. Some of these compounds have been
shown to be highly effective against Gram-positive bacteria [28,30,31], and therefore their
research has been extended to Gram-negative bacteria. This article summarizes the find-
ings on the effect of halogenated cinnamanilides against selected Gram-negative bacteria.

2. Results and Discussion

The discussed anilides were synthesized using microwave-assisted synthesis as
shown in Scheme 1 and described by Kos and Strharsky [28-32]. Reaction of ring-substi-
tuted cinnamic acids with appropriately substituted anilines using phosphorus trichloride
in chlorobenzene afforded anilides 1-23, the structures of which are listed in Table 1.

o) 0 N L,

S HaN A g “ | /—R
N OH + | R > N
R_I/ = R—|/ H
1-23

R'=H, Cl,CF; R?=F, Cl, CF3 OCF,4

Scheme 1. Synthesis of ring-substituted cinnamanilides 1-23. Reagents and conditions: (a) PCls, chlo-

robenzene, MW.

All compounds presented in this contribution have been recently tested in vitro
against Gram-positive bacteria and mycobacteria. First, universally susceptible collection
strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 were se-
lected. The second aspect of strain selection was the current status of strains with epide-
miologically relevant resistance patterns, represented by clinical isolates, e.g., methicillin-
resistant S. aureus (MRSA) isolates and vancomycin-resistant E. faecalis (VRE) isolates. In
addition, all compounds were tested in vitro against fast and slow growing mycobacterial
strains. In general, the minimum inhibitory concentrations (MICs) against Staphylococcus
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strains were <0.2 pg/mL and against facultatively anaerobic enterococci the MICs were <4
pg/mL [28-32]. It is important to note that all of these effective agents were bactericidal.
Due to the problematic search for active agents against Gram-negative bacteria, and
the excellent results of these compounds on Gram-positive bacteria, it was decided to test
the most effective derivatives also on selected Gram-negative pathogens. The selection of
bacteria was carried out in the context of BPPL [10] and the reference strains (from Amer-
ican Type Culture Collection (ATCC) [35]) Escherichia coli ATCC 25922, Pseudomonas aeru-
ginosa ATCC 27859 and the clinical isolate Klebsiella pneumoniae 797 (from the collection of
the Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine,
Veterinary University Brno, Czech Republic) [36] were selected for primary screening. The
results of the investigation are presented in Table 1, the activities are expressed as MICs.

Table 1. Structures of ring-substituted cinnamanilides 1-23 and antibacterial activities against se-

o A
T e
NN 7

lected Gram-negative bacteria.

N N
R'— H
=
No. R R , MIC [pig/mL] ,
E. coli ATCC 25922 P. aeruginosa ATCC 27859 K. pneumoniae 797
1 H 3-CFs >256 >256 >256
2 H 3,4-Cl >256 >256 >256
3 H 3,5-Cl >256 >256 >256
4 H 3,5-CFs >256 >256 >256
3-F-4-

5 H CFs >256 >256 >256
6 4-C1 3-CFs >256 >256 >256
7 4-C1  4-CFs >256 >256 >256
8 4-C1 3,5-Cl >256 >256 >256
9 4Cl 3,5CFs >256 >256 >256
10 3,4-C1 3,5-CFs >256 >256 >256
11 2-CFs 3-CFs >256 >256 >256
12 2-CFs 4-CFs >256 >256 >256
13 2-CFs 3,5-Cl >256 >256 >256
14 2-CFs 3,5-CFs >256 >256 >256
15 2-CFs 4-OCFs >256 >256 >256
16 3-CFs 3-CFs >256 >256 >256
17 3-CFs 4-CFs >256 >256 >256
18 3-CFs 3,5-Cl >256 >256 >256
19 3-CFs 3,5-CFs >256 >256 >256
20 4-CFs 3-CFs >256 >256 >256
21 4-CFs 4-CFs >256 >256 >256
22 4-CFs 3,5-C1 >256 >256 >256
23 4-CFs 3,5-CFs >256 >256 >256

ciprofloxacin 0.125 0.125 1.00

It is evident that the compounds in Table 1 did not show activity against Gram-neg-
ative bacteria, as their MIC values were 256 pg/mL or higher. However, the effect of cin-
namic acid derivatives on Gram-negative bacteria has been reported in the literature. De-
pending on the used test method, the bacteria (E. coli, P. aeruginosa, K. pneumoniae) and
evaluated compounds (ring-substituted acid, ester or amide), the activity varies in a wide
range of MIC values from 1 to >1000 pg/mL [37-39].



Chem. Proc. 2025, x, x FOR PEER REVIEW 4 0of 7

Ferulic and sinapic acids at 1000 pg/mL inhibited quorum sensing (QS), significantly
impaired biofilm formation, and reduced virulence of P. aeruginosa [40]. Rajkumari et al.
also confirmed that cinnamic acid alone at a sublethal concentration of 250 pg/mL effec-
tively inhibited both the production of QS-dependent virulence factors and biofilm for-
mation in P. aeruginosa without affecting bacterial viability [41]. Cinnamoyl hydroxamates
have been reported as potential inhibitors of QS and biofilm formation of P. aeruginosa at
concentrations of approximately 300 pg/mL [42]. It is true that testing any compounds at
such high concentrations can be controversial. On the other hand, this approach allows us
to determine whether the compounds show at least some activity against Gram-negative
bacteria. Although it is clear that no substances with clinically relevant efficacy have been
found, testing on such a large scale can provide valuable insights, e.g., on the threshold of
action or the nature of resistance. The results obtained can thus serve as a starting point
for further research.

In this study, derivatives were evaluated up to a meaningful concentration of 256
pg/mL. This low potency compared to the high activity against Gram-positive bacteria
raises the question of whether these compounds lack intrinsic antibacterial activity or
whether there are other factors that prevent their action, such as (i) limited permeability
into the cell of Gram-negative bacteria [43] or (ii) becoming a substrate for efflux trans-
porters [44]. Cinnamic acid derivatives have been described as inhibitors of efflux pumps
in Gram-positive bacteria [45], but are substrates for efflux pumps in Gram-negative bac-
teria [46]. Similarly, the complexity of the cell wall of Gram-negative bacteria is known to
provide an effective barrier against good permeability [43] of antibiotics. Therefore it is
possible that the tested cinnamanilides are effective (have intrinsic activity) but cannot
reach their target or effective concentration inside the Gram-negative bacterial cell. Fur-
ther tests, for example using efflux pump inhibitors or membrane permeability assays,
will be necessary to confirm this hypothesis.

3. Experimental Section
3.1. Chemistry

All discussed ring-substituted (2E)-N-aryl-3-phenylprop-2-enamides 1-5 [27,28],
(2E)-3-(4-chlorophenyl)-N-arylprop-2-enanilides and (2E)-3-(3,4-dichlorophenyl)-N-aryl-
prop-2-enanilides 6-10 [29], trifluoromethylcinnamanilide 11-23 [30,31] were previously
prepared and characterized.

3.2. In Vitro Antibacterial Evaluation

In vitro antibacterial activity of the synthesized compounds was evaluated against
representatives of Gram-negative bacteria: Escherichia coli ATCC 25922, Pseudomonas aeru-
ginosa ATCC 27859 [35] and clinical isolate of human origin Klebsiella pneumoniae 797 (from
the collection of the Department of Infectious Diseases and Microbiology, Faculty of Vet-
erinary Medicine, Veterinary University Brno, Czech Republic) [36]. The minimum inhib-
itory concentrations (MICs) were evaluated by the microtitration broth method according
to the Clinical and Laboratory Standards Institute (CLSI) [47,48] with some modifications,
as detailed in Markuliak et al. [49]. The results are summarized in Table 1.

4. Conclusions

Twenty-three differently halogenated cinnamic acid anilides, which were highly ac-
tive against Gram-positive bacteria, were evaluated by the microtiter broth method
against the reference strains E. coli ATCC 25922, P. aeruginosa ATCC 27859 and the clinical
isolate K. pneumoniae 797. Their MIC values were >256 ug/mL, so they did not cause any
real observable growth/viability inhibition of these Gram-negative bacteria. Additional
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experiments are needed to gain a deeper understanding of the expected activity activities
of these agents, such as inhibition of quorum sensing and virulence, or to verify their in-
trinsic antibacterial activity (e.g., synergism with efflux pump inhibitors or with com-
pounds affecting membrane permeability).
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