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Abstract

Benzoxazoles are recognized as significant building blocks in organic synthesis and ma-
terials science. This work observed the formation of benzoxazole from o-aminophenol and
o-hydroxybenzaldehyde using online '"H NMR (continuous flow cell, 80 MHz). The iden-
tification of changes in the functional group was complemented by ATR-FTIR analysis.
Additionally, the kinetic roles of phenylboronic acid and cyanide in the one-pot conden-
sation-cyclization reaction are examined. Real-time monitoring has revealed three observ-
able events: the rapid condensation of the aldehyde and o-aminophenol to produce the
imine; the formation of the boron complex in the presence of phenylboronic acid; and the
cyanide-assisted cyclization that converts the intermediate into benzoxazole. The findings
clarify the transformations that control throughput and provide valuable insights for op-
timizing reagent loadings under environmentally friendly conditions.

Keywords: monitoring reactions; kinetics of reactions; one-pot synthesis

1. Introduction

In catalyzed reactions, catalysts accelerate a desired transformation by lowering the
activation barrier and biasing pathway selection among competing channels. Promoters
are distinct from catalysts in that they typically exhibit negligible turnover in isolation but
enhance the performance of a catalyst, for example, by tuning the electronic environment,
adsorption thermodynamics, or transport to the active site; the effect can manifest as
higher activity, altered selectivity, or improved catalyst stability [1]. When catalysts and
promoters are used together, synergistic effects often occur. This means that there can be
changes in the rate constants of elementary steps, the thermodynamic equilibria of inter-
mediates, or the kinetic partitioning between different mechanistic pathways. Therefore,
understanding the mechanisms of reactions requires careful analysis to find which steps
are controlled by kinetics, which are influenced by thermodynamics (pre-equilibrium),
and where phenomena such as saturation or inhibition might arise [2].
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Otherwise, benzoxazoles are versatile heteroaromatic compounds in medicinal and
materials chemistry [3-9]. Various protocols involve the condensation of aldehydes with
o-aminophenols followed by oxidative cyclization and dehydration under mild condi-
tions, including metal-free, metal-catalyzed, and promoter-assisted variations [10-19].

Despite the rich method literature, the relative kinetic roles of (i) imine formation
(condensation), (ii) boron complexation (such as phenylboronic acid as promoter, and
considering published evidence on the boron complex formed between phenylboronic
acid and the imine) [16-18], and (iii) cyanide-enabled aerobic cyclization have not been
consistently analyzed under either batch or flow conditions [20,21]. In this study, we uti-
lize benchtop 1H NMR [22-26], with online flow cell [27-29], supplemented by ATR-FTIR,
to achieve: (i) determine the kinetic order of the condensation step (imine formation), (ii)
investigate whether boron complexation influences the reaction rate (for example, by al-
tering equilibrium or stabilizing the transition state), and (iii) assess how the cyclization
step (forming benzoxazole) depends on the concentration of cyanide.

2. Materials and Methods

Reagents. Salicylaldehyde (1), 2-aminophenol (2), phenylboronic acid (PBA), and
KCN were used as received (299%). Deuterated NMR solvents: MeOD, CDCls, DMSO-ds;
TMS as internal standard. Reagents and solvents were obtained from Sigma Aldrich.

All reactions were carried out under ambient temperature (= 25 °C) and pressure in
a 10.0 mL total volume with the following stoichiometry: 1.0 equiv of 1 and 2; PBA at 0.1,
0.5, or 1.0 mol %; KCN at 0.5, 1.0, or 1.5 equiv. PBA was dissolved in minimal MeOH and
KCN in minimal H20, and then the two solutions were combined. The PBA content and
water activity are mechanistically relevant because boronic acids form boroxines and
boronate esters in dynamic equilibria that influence dehydration.

A benchtop NMR (Magritek, Spinsolve 80 MHz) with a continuous flow cell acquired
H NMR spectra every 5 min without interrupting flow. ATR FTIR (PerkinElmer, Spec-
trum 100) tracked C=O, C=N, and O-H bands to support assignments. Typical '"H NMR
handles: aldehydic CHO (~10 ppm), imine CH (~9 ppm), and diagnostic aromatic reso-
nances of benzoxazole 4 (~8 ppm). Evidence indicates the formation of boron-complex A
from imine 3 and the subsequent formation of benzoxazole 4 (Figure 1) [16].
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Figure 1. Synthesis of 2-arylbenzoxazole 4, promoted by PBA and KCN [16].

Rate orders were obtained by initial rate analysis from early, linear regime data while
varying the initial concentration of a single component at constant others, and integrated
rate fitting to appropriate forms. The influence of PBA was tested by varying its loading
at fixed substrate concentrations. Cyanide dependence was examined by varying KCN
while holding other parameters constant. All measurements were performed in replicate;
fits were evaluated by residual inspection and goodness of fit metrics.

3. Results and Discussion

The initial-rate analysis and integrated fits indicate that the condensation step follows
a second-order rate law, being first-order in both aldehyde and aminophenol. In contrast,
the rate of boron complex formation appears to be independent of the concentration of
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PBA within the ranges examined. Lastly, the step involving cyanide addition shows zero-

order behavior with respect to benzoxazole, suggesting that the cyanide concentration

does not influence the rate-limiting step under these conditions. This could indicate that

a cyanide-dependent pre-equilibrium is saturated. Figure 2 illustrates the kinetic behavior

of the reaction conducted in a continuous flow cell with online NMR in methanol (MeOH).

In part (a), the red line represents the rate of aldehydic proton consumption, while the

yellow line indicates the rate of imine formation. In part (b), the red line shows the rate of

imine consumption, and the yellow line represents the rate of benzoxazole formation.
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Figure 2. Reaction kinetics using a continuous flow cell in an online NMR in MeOH: (a) Rate of

aldehydic proton consumption (red line) and imine formation (yellow line); (b) Rate of imine con-

sumption (red line) and benzoxazole formation (yellow line).

The rapid second-order reaction in the condensation step follows a classic mecha-

nism. This involves a nucleophilic attack of aminophenol 2 on the aldehyde carbonyl 1,

leading to the formation of a hemiaminal, which is then dehydrated. Afterward, the data

indicate that the yield is controlled during the intermediate phase by boron complex A

formation. In the final phase, while cyanide promotes oxidative cyclization, the formation

of benzoxazole 4 occurs in a zero-order reaction. This means that the concentration of ben-

zoxazole remains constant over time and is independent of the amount of cyanide used

(0.5, 1.0, and 1.5 equivalents).

Together, these data indicate that throughput is controlled upstream by the bimolec-

ular condensation, not by downstream borate or cyanide events. The second-order de-

pendence in the condensation step aligns with a classical pathway (nucleophilic attack of

the aminophenol on the aldehyde to give a hemiaminal, followed by dehydration). The

borate complex is readily detected but kinetically innocent under our conditions, con-

sistent with an off-cycle or fast equilibrium role that does not limit flux to product. Finally,

zero-order behavior in CN- rules out CN participation in the rate-determining transition
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state (within the tested domain), or indicates that CN-dependent activation is saturated,
making subsequent, CN-independent chemistry rate-limiting. The proposal mechanistic
pathway (Figure 3) begins with condensation (imine formation) to give intermediate 3,
followed by reversible complexation with PBA to yield boron-complex A, and finally cy-
anide-promoted oxidative cyclization to benzoxazole 4.
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Figure 3. Proposed pathway: By condensation to form imine 3, then through complexation with
PBA to form boron complex A. Finally, the rate-determining step, cyanide-mediated cyclization to

produce 4.

Practical implications: to accelerate the process, increasing either aldehyde or amino-
phenol concentration is effective (bimolecular control), whereas increasing boron or cya-
nide is not; catalyst choice may be guided toward promoters that accelerate condensation,
rather than downstream cyclization; the kinetic neutrality of boron and cyanide under
these conditions suggests scope to lower their loadings without throughput penalties, im-
proving process mass intensity.
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Appendix A
Appendix A.1

The kinetics of the reaction between compound 1 and compound 2, leading to the
formation of the imine intermediate 3, were studied. In the subsequent '"H NMR spectrum,
a decrease in the intensity of the signal corresponding to the aromatic aldehyde proton at
9.77 ppm (a), was observed over the acquisition time of the spectra. Conversely, the signal
for the imine at 8.64 ppm increased in intensity (b). Additionally, a cluster of multiple
signals observed between 7.5 and 6.9 ppm corresponds to the protons of the aromatic
groups. Representative stacked NMR spectra of the monitored reactions. The spectra were

collected every 5 min during the online reaction time.

(@ (b)

Figure Al. '"H NMR spectra of the reaction monitoring: (a) the proton signal of the aromatic alde-
hyde at 9.77 ppm and (b) the proton signal of the imino group in the intermediate at 8.64 ppm.
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Figure A2. '"H NMR spectra of imino intermediate 1a-[[(2-hydroxy-4-methylphenyl) imino]me-
thyl]phenol 3.
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Figure A3. Stacked FTIR-ATR spectra of salicylaldehyde 1 (blue), imine 3 (yellow), and 2-amino-4-
methylphenol 2 (orange).
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