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Abstract 

1,5-disubstituted tetrazoles (1,5-Ds-T) are heterocyclic bioisosteres of the cis-amide bond, 

commonly found in bioactive compounds, pharmaceuticals, and functional materials. 

Chromones are privileged scaffolds widely present in natural products and are well 

known for their diverse biological activities, including anticancer, antimicrobial, antidia-

betic, anti-inflammatory, and antioxidant properties. Isocyanide-based multicomponent 

reactions, such as the Ugi-Azide (UA-4CR), provide a versatile strategy for synthesizing 

1,5-Ds-T, which can be incorporated into other privileged heterocyclic or commercially 

available drugs. Herein, we describe a sonochemical one-pot synthesis of 1,5-Ds-T con-

nected to chromone under mild conditions, highlighting their potential relevance in me-

dicinal chemistry. 
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1. Introduction 

Heterocyclic compounds containing carbon and at least one heteroatom (nitrogen, 

oxygen, or sulfur) are fundamental structural motifs in medicinal chemistry [1]. In recent 

years, bis-heterocycles have attracted considerable attention due to the synergistic en-

hancement of their physicochemical and biological properties, offering promising appli-

cations across various fields [2,3]. However, the synthesis of bis-heterocycles remains 

challenging, as conventional methods typically involve multiple steps, resulting in non-

eco-friendly protocols that require an extensive amount of reagents and excess of solvents 

involved in purification procedures, as well as reduced overall yields [4]. 

One-pot synthetic processes are undoubtedly one of the green synthetic tools that 

have emerged in modern organic synthesis as key strategies in the development of sus-

tainable processes. Among them, isocyanide-based multicomponent reactions (IMCRs) 

are particularly valuable for the green synthesis of nitrogen-containing heterocycles, in-

cluding 1,5-Ds-T [5,6]. The UA-4CR is especially noteworthy, as it enables the one-pot 

synthesis of 1,5-Ds-T derivatives. The reaction proceeds through the condensation of an 

aldehyde or ketone with a primary amine, followed by the incorporation of an isocyanide 

and an azide source, commonly trimethylsilyl azide (TMSN3), which produces hydrazoic 

acid in situ [7–13]. 
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MCRs have been employed for the direct construction of heterocycles. However, het-

erocyclic moieties can also serve as substituents in MCR inputs, thereby increasing the 

complexity of the final product [14]. In 2014, Gámez-Montaño et al. reported the use of 3-

formylchromone in the UA-4CR, employing indium (III) chloride as a catalyst (Scheme 1) 

[15]. This strategy highlights the potential of integrating heterocyclic frameworks into 

multicomponent reaction pathways. 

 

Scheme 1. Previous report of synthesis of 3-tetrazolylmethyl-4H-chromen-4-ones. 

Herein, we report a sonochemical one-pot synthesis of 3-tetrazolylmethyl-4H-

chromen-4-ones via the UA-4CR under free catalyst conditions, affording good overall 

yields (59–70%) (Scheme 1). This strategy approach provides a valuable platform for gen-

erating novel tetrazole-chromone analogs with potential application in medicinal chemis-

try and materials science. 

2. Results and Discussion 

Initially, the synthesis of 1,5-DS-1H-T (8a) via a UA-4CR, which involves 3-

formylchromone (1), aniline (6a), trimethylsilylazide (3), and cyclohexyl isocyanide (7a) 

under conventional conditions in EtOH at room temperature (Table 1, Entry 1), yielded 

8a in 56%. Recently, we introduced the green USI-assisted UA-4CR under solvent-free 

conditions [9], however, the model proposed herein yielded unsatisfactory performance. 

When the reaction was performed using EtOH was afforded in moderate yield (Table 1, 

entries 1–2). 

Table 1. Screening conditions for the synthesis of molecule 8a. 

 
Entry Solvent Temperature Time Yield (%) 

1 EtOH a r.t. 12 h 56 

2 --- b r.t. 3 h Traces 

3 EtOH b r.t. 3 h 63 
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(a) stirring, (b) sonication. 

Using the optimized conditions, a series of 3-tetrazolylmethyl-4H-chromen-4-ones 

(8a–e) is depicted (Scheme 2). The effect of the electronic nature of the amine component 

was evaluated; the methodology doesn’t work for aliphatic amines. The final products 

were obtained with moderate yields (59–70%). 

 

Scheme 2. Synthesis of 3-tetrazolylmethyl-4H-chromen-4-ones scope. 

3. Experimental Methods 

3.1. General Experimental Information 

NMR spectra (1H and 13C) were obtained on a Bruker Ascend 400 MHz, with deuter-

ated chloroform (CDCl3). Chemical shifts (δ) are indicated in ppm, tetramethylsilane 

(TMS) as reference. Coupling constants (J) in Hertz (Hz), and signal multiplicities are de-

scribed with standard abbreviations: singlet (s), doublet (d), triplet (t), quartet (q), and 

multiplet (m). MestReNova software (version 14.2.0-26256) was used for spectral analysis. 

TLC on silica gel F254 aluminum sheets was used for reaction monitoring, which was 

visualized under UV at 254 nm. The purification was performed by column chromatog-

raphy using silica gel (230–400 mesh). Elution was performed with hexane and ethyl ace-

tate, also used in TLC and retention factor (Rf) calculations. All reagents from Sigma-Al-

drich were used without purification. 

3.2. Procedure 

In a sealed vial, 3-formylchromone (1, 1.0 equiv.), amine (2a–d, 1.0 equiv.), trime-

thylsilylazide (3, 1.0 equiv.), and isocyanide (7a–b, 1.0 equiv.) were dissolved in EtOH (1.0 

M), then the reaction mixture was sonicated at room temperature, affording the corre-

sponding 1,5-Ds-Ts (8a–e). 

3.3. Spectral Data 

 

3-((1-cyclohexyl-1H-tetrazol-5-yl)(phenylamino)methyl)-4H-chromen-4-one (8a) 

White solid, Rf = 0.37 (30% ethyl acetate in hexanes), 1H (400 MHz, CDCl3, 25 °C, TMS) 

δ 8.31 (s, 1H), 8.18 (dd, J = 8.0, 1.4 Hz, 1H), 7.68 (ddd, J = 8.5, 7.1, 1.7 Hz, 1H), 7.47–7.41 (m, 
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2H), 7.21–7.14 (m, 2H), 6.82–6.75 (m, 1H), 6.72–6.67 (m, 2H), 6.17 (d, J = 7.1 Hz, 1H), 4.97 

(d, J = 7.1 Hz, 1H), 4.74–4.65 (m, 1H), 2.08–1.87 (m, 8H), 1.50–1.37 (m, 2H); 13C NMR (100 

MHz, CDCl3) δ 176.6, 156.5, 155.3, 154.1, 145.1, 134.1, 129.5, 125.5, 123.4, 121.3, 119.3, 118.3, 

113.7, 58.3, 44.5, 33.2, 32.6, 29.6, 25.1, 24.8. 

 

3-(((4-chlorophenyl)amino)(1-cyclohexyl-1H-tetrazol-5-yl)methyl)-4H-chromen-4-one (8b) 

Yellow solid, Rf = 0.37 (30% ethyl acetate in hexanes), 1H (400 MHz, CDCl3, 25 °C, 

TMS) δ 8.27 (d, J = 0.7 Hz, 1H), 8.19 (ddd, J = 8.0, 1.9, 0.5 Hz, 1H), 7.70 (ddd, J = 8.7, 7.1, 1.7 

Hz, 1H), 7.48–7.41 (m, 2H), 7.15–7.09 (m, 2H), 6.66–6.61 (m, 2H), 6.15 (d, J = 7.7 Hz, 1H), 

5.15 (d, J = 7.8 Hz), 4.73–4.61 (m, 1H), 2.02–1.78 (m, 8H), 1.53–1.38 (m, 2H); 13C NMR (100 

MHz, CDCl3) δ 176.6, 156.4, 155.6, 154.0, 143.5, 134.3, 129.5, 125.8, 125.6, 124.2, 123.4, 121.1, 

118.4, 114.9, 58.4, 44.5, 33.3, 32.8, 25.2, 24.8 

 

3-((1-cyclohexyl-1H-tetrazol-5-yl)((3,4,5-trimethoxyphenyl)amino)methyl)-4H-chromen-4-one 

(8c) 

Yellow solid, Rf = 0.14 (30% ethyl acetate in hexanes), 1H (400 MHz, CDCl3, 25 °C, 

TMS) δ 8.21 (s, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.59–7.54 (m, 1H), 7.35–7.28 (m, 2H), 6.06 (d, J 

= 7.9 Hz), 5.86 (s, 2H), 5.01 (d, J = 8.1 Hz, 1H), 4.53–4.45 (m, 1H), 3.61 (s, 6H), 3.59 (s, 3H), 

1.87–1.72 (m, 8H), 1.35–1.23 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 175.2, 155.0, 1545, 153.0, 

152.7, 140.3, 133.0, 129.9, 124.5, 124.2, 122.0, 120.5, 117.1, 90.4, 63.0, 59.7, 57.0, 54.7, 43.1, 

31.8, 31.5, 24.0, 23.8, 23.5. 

 

3-((1-cyclohexyl-1H-tetrazol-5-yl)((4-methoxyphenyl)amino)methyl)-4H-chromen-4-one (8d) 

Yellow oil, Rf = 0.25 (30% ethyl acetate in hexanes), 1H (400 MHz, CDCl3, 25 °C, TMS) 

δ 8.29 (s, 1H), 8.18 (dd, J = 8.1, 1.7 Hz, 1H), 7.69 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 7.47 (dd, J = 

8.6, 1.2, 1H), 7.42 (ddd, J = 8.6, 7.2, 1.7, 1H), 6.77 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 

6.06 (s, 1H), 4.69–4.59 (m, 1H), 4.47 (s, 1H), 3.72 (s, 3H), 2.11–1.79 (m, 7H), 1.51–1.38 (m, 

3H); 13C NMR (100 MHz, CDCl3) δ 176.9, 155.5, 153.8, 139.0, 134.4, 125.8, 125.8, 123.6, 122.7, 

121.8, 118.5, 118.4, 116.1, 115.3, 58.5, 55.8, 46.1, 33.4, 32.9, 25.5, 25.0. 
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3-((1-(tert-butyl)-1H-tetrazol-5-yl)(phenylamino)methyl)-4H-chromen-4-one (8e) 

White solid; Rf = 0.32 (30% ethyl acetate in hexanes)), 1H (400 MHz, CDCl3, 25 °C, 

TMS) δ 8.31 (s, 1H, CH), 8.16 (d, J = 8.0 Hz, 1H), 7.70–7.66 (m, 1H), 7.47 (d, J = 8.4 Hz, 1H), 

7.43–7.39 (m, 1H), 7.19–7.15 (m, 2H), 6.80–6.75 (m, 1H), 6.68 (d, J = 7.9 Hz, 2H), 6.46 (d, J = 

7.6 Hz, 1H), 4.79–4.76 (m, 1H), 1.85 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 176.9, 156.5, 

155.6, 134.1, 129.6, 125.6, 125.5, 123.5, 118.4, 113.3, 62.3, 45.2, 30.0. 

4. Conclusions 

The main contribution of the present work falls mainly in the multicomponent one-

pot synthesis and pharmaceutical fields. 

The use of heterocyclic input in UA-4CR increased the complexity of 1,5-disubsti-

tuted tetrazoles, thereby enhancing their potential applications. 

This protocol offers several advantages, including one-pot synthesis, good overall 

yields, an alternative green energy source, short reaction times, an eco-friendly solvent, 

operational simplicity, and the avoidance of toxic catalysts. 
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