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Abstract 

The TEA domain (TEAD) transcription factors are important parts of the Hippo signaling 

cascade and are important therapeutic targets in cancer research because they help control 

cell growth, avoid apoptosis, and cause tumors to form. In this study, a structure-based 

virtual screening method was used to find new TEAD antagonists in the ChemDiv natural 

product database. Using the AutoDock platform for molecular docking, we ranked eight 

candidate ligands—16956, 726, 5271, 11768, 12384, 15598, 15641, and 3622—based on 

strong binding affinities, as shown by docking energies that ranged from −8.02 to −8.49 

kcal/mol. Swiss ADME’s full in silico ADMET profile showed that all of the selected com-

pounds had good pharmacokinetic properties and did not break Lipinski’s rule of five, 

which means they would be quite bioavailable when taken by mouth. Two lead candi-

dates, 11768 and 15598, did not pass across the blood-brain barrier (BBB) and were not 

substrates for P-glycoprotein. This means that they had less exposure to the central nerv-

ous system and a lower chance of developing multidrug resistance. Later molecular dy-

namics (MD) simulations verified that the ligand TEAD complexes were stable in their 

shapes, and MMGBSA (Molecular Mechanics/Generalized Born Surface Area) free energy 

calculations indicated that they had high-affinity binding. Principal component analysis 

(PCA) and free energy landscape tests helped to explain even more the dynamic behavior 

and thermodynamic landscapes of the complexes. This integrated computational tech-

nique helped us find strong, drug-like TEAD inhibitors in a logical way. It also gave us a 

solid base for further preclinical testing and structural optimization in the creation of tar-

geted anticancer drugs. 

Keywords: TEAD inhibitors; Hippo signaling pathway; molecular docking; ADMET;  

anticancer drug discovery 

 

1. Introduction 

The Hippo signaling pathway is an evolutionarily conserved kinase cascade that fun-

damentally regulates cellular growth, proliferation, apoptosis, and organ size. Its dysreg-

ulation is significantly associated with tumorigenesis in various malignancies, including 

hepatocellular carcinoma, mesothelioma, glioblastoma, and breast cancer. At the 
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molecular level, the pathway works through a series of phosphorylation events that hap-

pen in a certain order. First, the upstream kinases MST1 and MST2 activate LATS1 and 

LATS2, which then phosphorylate and deactivate the transcriptional co-activators Yes-

associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif 

(TAZ) [1]. This keeps them in the cytoplasm and causes them to break down. Without 

Hippo signaling, unphosphorylated YAP/TAZ build up in the nucleus and attach to tran-

scriptional enhancer activator domain (TEAD) proteins (TEAD1–TEAD4) [2]. This acti-

vates oncogenic transcriptional programs that control epithelial–mesenchymal transition, 

angiogenesis, survival signaling, and metabolic reprogramming [3–5]. 

TEAD is a very interesting target in precision oncology because the YAP/TAZ–TEAD 

complex plays a central role in promoting cell proliferation, stemness, and therapeutic 

resistance [6,7]. However, TEAD proteins have traditionally been deemed “undruggable” 

owing to their absence of enzymatic catalytic activity and relatively planar protein–pro-

tein interaction surfaces, which offer constrained prospects for high-affinity ligand bind-

ing [8]. The discovery of a palmitoylation pocket within TEAD, a hydrophobic cavity that 

allows for post-translational lipidation that is important for TEAD stabilization and tran-

scriptional activity, has sparked new efforts to create small molecules that can change how 

TEAD works [7]. Current strategies for finding TEAD inhibitors use advances in structure-

based drug design (SBDD) that have come about because of the availability of high-reso-

lution TEAD crystal structures [8,9]. These structures let computational chemists use vir-

tual screening, molecular docking, and molecular dynamics (MD) simulations [10] to pre-

dict ligand binding poses and stabilities [6,11]. After that, they use methods like Molecular 

Mechanics/Generalized Born Surface Area (MM/GBSA) to do rigorous free energy evalu-

ations [12]. Complementary computational methodologies, including principal compo-

nent analysis (PCA) and free energy landscape (FEL) mapping, elucidate the conforma-

tional dynamics of TEAD and the ligand-induced stabilization of specific protein states, 

thereby facilitating rational hit-to-lead optimization. The integration of in silico absorp-

tion, distribution, metabolism, excretion, and toxicity (ADME/Tox) predictions is im-

portant because it lets us prioritize compounds with good pharmacokinetic properties, 

oral bioavailability, metabolic stability, and lower toxicity risks [13]. It also lets us leave 

out molecules that are predicted to cross the blood-brain barrier unnecessarily or act as P-

glycoprotein (P-gp) substrates, which could lead to multidrug resistance. Natural product 

libraries [14], like the ChemDiv database, have shown to be good sources of chemically 

diverse scaffolds with built-in bioactivity [14,15]. Several candidate TEAD inhibitors 

found through computational screening have strong docking scores, good MM/GBSA 

binding free energies, and pharmacokinetic profiles that are similar to those of oral drugs. 

These in silico results support experimental work that has led to the discovery of the first-

in-class TEAD palmitoylation inhibitors, such as VT3989, which is currently in clinical 

trials. They also support the discovery of covalent ligands that target cysteine residues in 

the TEAD palmitate pocket and strongly and selectively inhibit YAP/TAZ–TEAD tran-

scriptional activity. These advancements signify a transformative shift in cancer drug dis-

covery, enabling previously intractable protein–protein interaction surfaces to become 

druggable through the integration of structural biology, computational modelling, and 

rational medicinal chemistry. The wider therapeutic implications go beyond cancer, since 

problems with the Hippo pathway are also linked to fibrosis, regeneration, and immune 

evasion. This means that TEAD inhibitors may be useful in a number of clinical situations 

[14]. 

Even with this promise, there are still problems to solve, such as making sure that 

TEAD isoforms are selective, stopping interactions with unrelated lipid-binding proteins, 

and getting enough systemic exposure while keeping safety. Despite this, combining high-

throughput virtual screening, molecular simulations, binding free energy calculations, 
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and ADME/Tox filtering is a strong way to speed up the search for drugs that target 

TEAD. The Hippo–YAP/TAZ–TEAD axis is an important oncogenic driver and a potential 

therapeutic weakness. Finding powerful, drug-like small-molecule inhibitors that can 

stop TEAD-mediated transcription could lead to a new type of precision therapy for can-

cers caused by problems with the Hippo pathway, giving patients with few other options 

new ways to get better. 

2. Methodology 

2.1. Molecular Docking 

Using AutoDock 4.2 [16,17], molecular docking was done to guess how ligands 

would fit into the ATP-binding site of Phosphoinositide 3-kinase (PI3K; PDB ID: 7CNL) 

[18]. We got the crystal structure from the RCSB Protein Data Bank and got it ready by 

taking out the crystallographic water molecules and co-crystallized ligands. Using Auto-

Dock Tools (ADT), polar hydrogens were added and Gasteiger charges were given. Before 

docking, the MMFF94 force field [19] was used to minimize the ligands 

(https://www.chemdiv.com/catalog/diversity-libraries/3d-diversity-natural-product-like-

library/). The docking grid was 50 × 50 × 50 Å with a 0.345 Å space between each point. It 

was centered on the ATP-binding cleft. The Lamarckian Genetic Algorithm (LGA) was 

used with 50 independent runs. Based on the docking score and interaction profile [20], 

the pose with the highest score was chosen. We used PyMOL and LigPlot+ to see how 

proteins and ligands interacted with each other. 

2.2. Molecular Dynamics Simulation 

We used the Desmond v6.3 module (Schrodinger, LLC) to run molecular dynamics 

(MD) simulations to see how stable docked complexes were. A TIP3P orthorhombic water 

box with a 10 Å buffer was used to solvate each protein–ligand system. To balance the 

charges, counterions were added, and 0.15 M NaCl was added to mimic normal body 

conditions. The OPLS_2005 force field was used to make the system as small as possible. 

After minimization, equilibration was performed under NVT (constant number, volume, 

temperature) and NPT (constant number, pressure, temperature) ensembles for 2 ns each 

[21–23]. Then, the Nose–Hoover thermostat and Martyna–Tobias–Klein barostat were 

used to run production simulations for 100 ns at 300 K and 1 atm. Desmond’s analysis 

tools were used to figure out the Root Mean Square Deviation (RMSD), Root Mean Square 

Fluctuation (RMSF), Radius of Gyration (Rg), and hydrogen bond occupancy for the tra-

jectory analyses [11,24–27]. 

2.3. MM-GBSA Binding Free Energy Calculations 

The MM-GBSA (Molecular Mechanics/Generalized Born Surface Area) method in 

Schrödinger’s Prime module was used to figure out the binding free energy [28]. Every 10 

ns, snapshots were taken from MD trajectories, and then energy minimization was done 

on them. The VSGB 2.0 solvation model and the OPLS_2005 force field were used [29]. We 

used the following equation to figure out the binding free energy (ΔG_bind): 

ΔGbind = Gcomplex − (Gprotein + Gligand) ΔG_{bind} = G_{complex} - (G_{protein} + G_{ligand}) ΔG-

bind = Gcomplex − (Gprotein+Gligand). 
 

where, GcomplexG_{complex} Gcomplex, GproteinG_{protein} Gprotein, and 

GligandG_{ligand}Gligand are the minimized free energies of the complex, protein, and 

ligand, respectively. Energy decomposition was conducted to assess the contributions 

from van der Waals, electrostatic, solvation, and lipophilic interactions [28]. 
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2.4. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) was employed to identify the predominant col-

lective motions of the protein-ligand complexes during simulations. The trajectories were 

aligned with the reference structure, and a covariance matrix of atomic positional fluctu-

ations (Cα atoms) was created [10]. Eigenvectors and eigenvalues were computed, and 

the initial two principal components (PC1 and PC2) were examined. We plotted projec-

tions of MD snapshots along the PC1–PC2 axes to find conformational clusters and meta-

stable states [30,31]. 

2.5. Free Energy Landscape (FEL) 

The Free Energy Landscape (FEL) was created by projecting conformation ensembles 

onto the first two principal components (PC1 and PC2) from MD trajectories[32]. We used 

the Boltzmann relation to find free energy (ΔG): 

ΔG(x,y) = −RT ln P(x,y) ΔG(x,y) = -RT ln P(x,y) ΔG(x,y) = −RTlnP(x,y)  

where P(x,y) is the probability distribution along PC1–PC2, R is the universal gas constant, 

and T is the temperature (300 K). Stable conformational states were linked to low-energy 

basins, while shallow local minima showed metastable states. GROMACS 2020.4 made 

the FEL plots, and OriginPro 2022 showed them [10,26,32]. 

3. Results and discussion: 

3.1. Molecular Docking Analysis and MMGBSA 

The molecular docking based virtual screening gave rise to identification of 16956, 

726, 5271, 11768, 12384, 15598, 15641, and 3622 based on strong binding affinities, as shown 

by docking energies that ranged from −8.02 to −8.49 kcal/mol (see Figure 1). The molecular 

docking analysis of compounds 11768 and 15598 demonstrates unique interaction pat-

terns with the receptor binding site, corroborated by MMGBSA (Molecular Mechanics 

Generalized Born Surface Area) binding free energy computations. The docking data for 

compound 11768 shows a lot of interactions that make it more stable (see Tables 1 and 2 

for docking interaction of ligand 11768 and 15598). 

 

Figure 1. Display of 2D structure of ligands; 16956, 726, 5271, 11768, 12384, 15598, 15641, and 3622 

identified in molecular docking based virtual screening. 
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Table 1. Presentation of docking interactions for the ligand 11768. 

1.1 Hydrophobic Interactions 

1 350D TYR 3.53 13768 12235 

2 364C ARG 3.87 13766 9077 

3 404D ASP 3.75 13770 13165 

1.2 Hydrogen Bonds 

1 320A GLN 1.96 2.85 144.35 1509 [Nam] 13757 [O2] 

2 352A ARG 2.99 3.52 115.05 1993 [Ng+] 13756 [O2] 

3 361A ARG 3.47 3.89 106.80 2150 [Ng+] 13755 [O2] 

4 361A ARG 2.42 2.98 113.73 2153 [Ng+] 13755 [O2] 

1.3 π-Cation Interactions 

1 361A ARG 3.38 0.66 Aromatic 13738, 13739, 13740, 13741, 13742, 13744 

Table 2. Presentation of docking interactions for the ligand 15598. 

2.1 Hydrophobic Interactions 

1 361A ARG 3.56 13756 2147 

2.2 Hydrogen Bonds 

1 328D THR 1.84 2.78 175.55 11891 [O3] 13750 [O3] 

2 403D ARG 3.29 3.86 116.43 13743 [N3] 13147 [Ng+] 

2.3 π-Cation Interactions 

1 361C ARG 3.63 1.65 Aromatic 
13748, 13755, 13756, 13757, 

13758, 13759 

2.4 Salt Bridges 

1 404D ASP 3.45 Tertamine 13743 

These include hydrophobic contacts with TYR350, ARG364, and ASP404; hydrogen 

bonds with GLN320, ARG352, and ARG361; and a strong π-cation interaction with 

ARG361. These interactions work together to make a strong and stable binding orienta-

tion. The hydrogen bonds that were found have good bond lengths (1.96–3.47 Å) and an-

gles, which means they are stable in one direction. The π-cation interaction at ARG361, 

however, makes aromatic stabilization stronger. This big interaction network has a bind-

ing free energy (ΔGbind = −55.86 kcal/mol) that is better than that of compound 15598, 

which means it has a stronger affinity for the receptor. The van der Waals interactions 

(−51.84 kcal/mol) and the Coulombic forces (−17.24 kcal/mol) are the two things that have 

the biggest effect on this binding energy. Solvation effects (+27.32 kcal/mol) help to bal-

ance these out a little, which makes the net ΔGbind very negative. Conversely, compound 

15598 exhibits a restricted interaction profile. It has hydrophobic contacts with ARG361, 

hydrogen bonds with THR328 and ARG403, a π-cation interaction with ARG361, and a 

salt bridge with ASP404 (see Figure 2). 
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Figure 2. Depiction of 3D interaction of ligand 11768 with TEAD Protein (pdb:2cnl). 

The salt bridge makes the electrostatic stability better, but there are fewer interactions 

overall and fewer types of interactions than in 11768. So, its MMGBSA ΔGbind (−45.90 

kcal/mol) is not as good as that of 11768, which means it has a lower binding affinity. For 

15598, van der Waals forces (−35.95 kcal/mol) and lipophilic contributions (−11.92 

kcal/mol) are important stabilizing factors. However, solvation penalties (+14.73 kcal/mol) 

lower the overall affinity (see Figure 3). 

 

Figure 3. Depiction of 3D interaction of ligand 15598 with TEAD Protein (pdb:2cnl). 

In contrast, compound 11768 has a stronger binding affinity because its strong hy-

drogen bonds, wide hydrophobic and electrostatic interactions, and beneficial van der 

Waals stabilization outweigh the solvation penalties. On the other hand, 15598 have less 

overall binding stability, which means that its MMGBSA energy is less favorable. This is 

because it forms important stabilizing interactions like the salt bridge. In summary, these 

data show that compound 11768 is the better choice for receptor binding because its dock-

ing profile and MMGBSA results consistently show that it has a higher binding affinity 

and may be more effective biologically than 15598 
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3.2. MD Simulation Analysis 

3.2.1. RMSD 

The 100-ns RMSD trajectories show that compound 11768 binds (see Figure 4). more 

stably and consistently than compound 15598. This is consistent with how they interact 

with each other when they dock. The protein Cα RMSD for 11768 (PL-RMSD 11768.png) 

goes from about 1.1–1.3 Å in the first nanoseconds to a plateau of about 2.7–3.1 Å after 

about 60 ns. This means that the receptor is balancing out normally and there are no signs 

that it is unfolding. The ligand RMSD (aligned with the protein) stays between 3.0 and 3.7 

Å for most of the production phase. It only shows short spikes and no long-term drift. 

This means that the shape is stable and only changes a little bit, not completely. This dy-

namic stability is consistent with the docking results, which indicated that 11768 exhibits 

numerous interactions: three hydrophobic contacts (TYR350, ARG364, ASP404), four hy-

drogen bonds (GLN320, ARG352, ARG361×2) characterized by optimal donor–acceptor 

distances (approximately 2.0–3.5 Å) and angles, along with a π–cation clamp that stabi-

lizes the aromatic ring system. The particular hydrogen bonds and cation–π interactions 

elucidate the reason the ligand remains in a singular basin on the RMSD landscape rather 

than exploring alternative conformations. For 15598 (PL-RMSD 15598.png), on the other 

hand, the protein Cα RMSD shows a steady equilibration (about 2.0–3.0 Å by mid-trajec-

tory), while the ligand RMSD shows big changes, going up quickly after about 10 ns and 

staying at 5–7+ Å for long periods of time (see Figure 5). 

 

Figure 4. RMSD plot for 11768 ligand in complex with the PDB 3CNL. 
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Figure 5. RMSD plot for 15598 ligands in complex with the PDB 3CNL. 

The overall trajectory shows bigger changes in amplitude and several quasi-stable 

plateaus. This means that the pose is changing and that it is partially moving away from 

important interactions. It does stay stable around 3–4 Å at times. These dynamics are sim-

ilar to the more streamlined docking footprint of 15598, which has one hydrophobic inter-

action (ARG361), two hydrogen bonds (THR328, ARG403), one π–cation interaction 

(ARG361), and one salt bridge to ASP404. The salt bridge has strong point electrostatics, 

but its interaction pattern is less redundant and more exposed to solvent than 11768. This 

means that 15598 is more likely to fight with water and change its side chains. The RMSD 

spikes happen when these connections break and then come back together, and when the 

search for new orientations happens. The narrow ligand-RMSD envelope of 11768 indi-

cates that the pocket has superior kinetic retention due to its intricate docking interaction 

profile, characterized by multi-site hydrogen bonding and an ARG361 π–cation lock that 

collectively mitigate rotational drift. The wide multi-basin RMSD profile of 15598, on the 

other hand, suggests that it is a ligand with a more flexible binding mechanism that is less 

affected by complementary form and electrostatics. This is consistent with its few docking 

contacts. The RMSD test based on MD backs up the order shown by docking. 11768 stays 

the same shape with little change, but 15598 keeps changing its structure, which makes it 

less stable in its pose and more likely to partially unbind when the temperature changes. 

3.2.2. RMSF 

The root-mean-square fluctuation (RMSF) profiles for the Cα atoms of the protein 

show how the local flexibility changes when a ligand binds. When viewed alongside dock-

ing contacts, they reveal the dynamic imprint of each molecule within the pocket. The 

global trace for the 11768 complex (P-RMSF 11768) is moderate (baseline 0.8–1.4 Å) and 

has loop spikes (2.5–4.0 Å) that are typical of segments that are in contact with solvent (see 

Figure 6). The corridor that connects the binding sites from about 320 to 365 and goes up 

to about 404 doesn’t move as much as the loops next to it. 

 

Figure 6. RMSF plot for 11768 ligands in complex with the PDB 3CNL. 

This means that a ligand is keeping the pocket stable in a mechanical way. The stabi-

lization is due to the dense interaction network that is expected to form when the two 

molecules dock. The scaffold is held in place by three hydrophobic contacts (TYR350, 

ARG364, and ASP404) and four directional hydrogen bonds (to GLN320, ARG352, and 
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twice to ARG361). A strong π–cation latch with ARG361 keeps the aromatic system in 

place. The interactions between the different parts of the cavity make it less flexible around 

the β/loop elements. The low RMSF band near residues ~350–365 and the moderate mo-

bility at 404 show this. There are places where loop flexibility is higher (like distal to the 

site), but the pocket-lining residues are relatively stable, which means that the ligand is 

securely positioned and stable in its pose. The 15598 complex (P-RMSF 15598), on the 

other hand, has clear spikes in some places (like around 30 and 295–300, reaching Å) and, 

most importantly, the pocket region doesn’t have a uniform attenuation. The baseline is 

still good (0.8–1.3 Å), but the area around the binding site has bigger and more random 

changes than 11768. This means that the pocket is more dynamic and can handle micro-

rearrangements when 15598 is present. The difference is because it has a more compact 

docking profile, with one hydrophobic interaction (ARG361), two hydrogen bonds 

(THR328 and ARG403), one π-cation interaction (ARG361), and one salt bridge to ASP404. 

A salt bridge can be very strong, but it has limits and can be changed by solvation and 

side-chain rotamers. This means that it has fewer extra parts than the multivalent network 

in 11768. The RMSF of 15598 has gone up by about 328–361, which is in line with the 

random breaking and reformation of these limited connections. This gives local loops 

more room to move around (see Figure 7). 

 

Figure 7. RMSF plot for 15598 ligands in complex with the PDB 3CNL. 

The RMSF comparison shows that 11768 strengthens the pocket allosterically by us-

ing different anchors that are spread out in space (H-bonds, π–cation interactions, and 

hydrophobic interactions). On the other hand, 15598 only partially stabilizes the pocket 

by focusing on ARG361 and ASP404. This isn’t enough to evenly reduce motion through-

out the cavity. The dynamic signatures confirm that 11768 is the better binder based on 

the docking interpretation. When docking shows more and better interactions, RMSF 

shows less local movement and a binding site that stays stable. But when docking shows 

fewer, more solvent-exposed contacts (15598), RMSF shows more local plasticity, which 

means weaker pose enforcement and possibly shorter residence time. 

3.2.3. Interaction Analysis of Ligands; 11768 and 15598 in Complex with 

Phosphoinositide-3-Kinase (PI3K; PDB:1e7u) Receptor Interactions Before and After MD 

Simulation 

The comparative interaction study conducted before and after 100-ns molecular dy-

namics shows that ligand 11768 maintains and even improves its expected docking 
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engagement pattern. In contrast, ligand 15598 partially restructures into a more solvent-

dependent network with fewer direct connections. The docking of 11768 showed that 

there was a multivalent anchor in the pocket. This was made up of hydrophobic interac-

tions with TYR350, ARG364, and ASP404; four hydrogen bonds that were best positioned 

to GLN320, ARG352, and two to ARG361; and a π-cation interaction with ARG361 (see 

Figure 8). 

  
(a) Ligand 11768 Before Simulation  (b) Ligand 11768 After Simulation 

Figure 8. Depiction of 2D interaction of ligand 11768 before and after simulation. 

The post-MD 2D interaction map supports this structure and shows how it fits into a 

bigger microenvironment. For example, GLN320 and ARG352 have polar interactions that 

last, ARG361 is a dual electrostatic/π-cation hub, and TYR350/ARG364 stay connected 

through hydrophobic or edge-to-face contacts. The MD snapshot shows that HIS363 is 

more active (through aromatic/CH–π interactions and sporadic hydrogen bonding) and 

that there are bridges made of water that connect to GLU349, VAL359, and nearby resi-

dues. These solvent interactions frequently exhibit elevated occupancies, indicating that 

the ligand utilizes a semi-ordered hydration shell while maintaining its primary, direct 

interactions. The outcome is an unnecessary, regionally spread contact network that 

matches the previously mentioned damped RMSF between 320 and 365/404 and the com-

pact ligand RMSD envelope. Both of these things show that the conformation is “locked” 

in place but can still move around inside the pocket. On the other hand, docking for 15598 

expected a more streamlined set of anchors. There was one hydrophobic interaction 

(ARG361), two hydrogen bonds (THR328 and ARG403), a π-cation interaction with 

ARG361, and a salt bridge to ASP404 (see Figure 9). 

  

(a) 15598 Before Simulation  (b) Ligand 15598 After Simulation 

Figure 9. Depiction of 2D interaction of ligand 15598 before and after simulation. 
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The 2D map shows a clear change after MD. Most of the interactions are now focused 

on HIS363, which has strong hydrophobic/aromatic contacts and frequent carbonyl inter-

actions. The cationic head group has temporary hydrogen bonds with THR348/TYR350 

and interacts with nearby water molecules that connect to VAL346. This setup is held up 

by several water bridges (10% to 50%), but the original direct hydrogen bonds to 

THR328/ARG403 and the ASP404 salt bridge are either weak or not there at all. This sug-

gests that the ARG361/ASP404 axis has moved slightly. This redistribution effectively sub-

stitutes robust, elongated tethers with a reduced number of direct anchors and solvent 

mediation. This fits with what was said before about the rise in multi-basin ligand RMSD 

and the less even RMSF drop in the binding corridor. The difference between before and 

after is clear: 11768 keeps its docking shape and makes it more stable by interacting with 

both canonical (GLN320/ARG352/ARG361/TYR350/ARG364) and auxiliary (HIS363, 

structured waters) molecules. This makes a strong network of interactions. On the other 

hand, 15598 is still compatible with the site, but it moves toward a water-assisted, HIS363-

centered theme with less electrostatic binding. This is why it is less stable and more flexi-

ble overall. The MD-refined interaction patterns indicate that 11768 is the superior binder 

and imply that enhancing direct interactions (for instance, by engineering substitutions to 

restore ARG361/ASP404 engagement) could significantly augment 15598’s residence time 

and affinity. 

4. ADME Study 

Ligands 11678 and 15598 are great for studying ADME (Absorption, Distribution, 

Metabolism, and Excretion) because they have strong structural, physicochemical, and 

rule-based drug-likeness profiles that can help you figure out if they can be taken by 

mouth. There are 22 heavy atoms and 6 aromatic atoms in ligand 15598, which weighs 

305.44 Da. Because it has a high sp3 carbon percentage (0.61), it is more complicated and 

three-dimensional. This helps the receptor stick and lowers the risk of side effects. The 

molecule is flexible because it has seven bonds that can move. It has some polarity because 

it has two hydrogen bond donors and two hydrogen bond acceptors. This means that it 

might dissolve in water without making the membrane less permeable. Ligand 15598 fol-

lows Lipinski’s Rule of Five and the rules set by Ghose, Veber, Egan, and Muegge. It does 

not break any of these rules. Its bioavailability score of 0.55 means that the body can only 

use it moderately well after it is taken by mouth. There are no PAINS or Brenk warnings, 

so false-positive activity and toxicophoric traits are not common. It can be done in a lab 

because synthetic accessibility is 2.98. Ligand 15598 is a good choice for ADME because it 

dissolves, passes through membranes, and stays stable during metabolism. That’s why it 

would make a great medicine. Ligand 11678 is on the ADME screening shortlist because 

it meets the drug-likeness requirements. It doesn’t break any pharmacokinetic rules be-

cause its molecular weight is between 200 and 500 Da and it doesn’t have a lot of hydrogen 

bond donors or acceptors. 11678 could be a lead molecule without PAINS or Brenk warn-

ings, just like ligand 15598. It’s easy to make ligand 15598, and it dissolves and moves 

through membranes easily. Ligand 11678 may show better selectivity for binding or sta-

bility in the body because of its structure or pharmacological properties. These ligands 

demonstrate that in silico ADME tests may select compounds prior to costly in vitro or in 

vivo evaluations. This makes it easier to find safe, effective drugs that can be taken by 

mouth. Ligand 15598 is the best “lead-like” precursor because it has a lower molecular 

weight (MW 305.44 vs. 447.46 for 11768), fewer aromatic heavy atoms (6 vs. 18), and a 

higher three-dimensionality (Fraction Csp3 0.61). These things usually make promiscuity 

worse and selection better. It has seven rotatable bonds instead of five, which makes it 

more flexible and able to fit different shapes while still following the Veber/Egan rules. 

The polar surface area (TPSA 44.98 Å2) makes it easier for things to pass through and be 
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absorbed by the mouth. There are no lead-likeness violations in 15598, and it has a great 

score of 2.98 for synthetic accessibility. It also doesn’t break any of the 

Lipinski/Ghose/Veber/Egan/Muegge rules, have any PAINS/Brenk warnings, or show 

any signs of CYP inhibition in 1A2/2C19/2C9/2D6/3A4. All of this lowers the risks and 

liabilities of DMPK and DDI. Ligand 11768 is a drug-like molecule that doesn’t break any 

Lipinski/Ghose/Veber/Egan/Muegge rules. It has a potency-optimized profile with a 

higher molecular weight, aromaticity, and topological polar surface area (111.26 Å2). This 

means it can better tell polar molecules apart, but people are worried about how well it 

can get through cells and P-glycopenia. One lead-likeness violation and a small rise in 

synthetic accessibility (3.41). Unlike 15598, which is all No, 11768 is likely to stop CYP 

(2C19, 2C9, 3A4 = Yes), which increases the risk of DDI and metabolic problems. But com-

pound 11768 can’t cross membranes as easily because it has a higher TPSA, even though 

it has higher lipophilicity markers (iLOGP/XLOGP3/WLOGP/MLOGP). But Compound 

15598 has a moderate lipophilicity and a low TPSA, which makes it easier for the skin to 

soak up and spread out on its own. This makes the negative log Kp for 15598 go up. In 

conclusion, compound 15598 is the best primary lead for quick in vivo progress with little 

chance of ADME. Compound 11768 is a good scaffold for firmly attaching to aromatic 

pockets and speeding up metabolism. However, its permeability and CYP liability may 

need to be lowered by changing its polarity, heteroatom distribution, or soft spot (see 

Supplementary Table S1 for ADMET results). 

5. PCA & Free Energy Landscape Study of Ligand 11768 

The principal component analysis (PCA) and free energy landscape (FEL) examina-

tion of ligand 11768 alongside its target protein provides substantial insights into the con-

formational dynamics and stability of the system during molecular dynamics simulation. 

The PCA, which was based on changes in Cartesian coordinates, showed that the first two 

principal components (PC1 and PC2) captured most of the changes in conformation. These 

components clearly divided conformational clusters. The PC1–PC2 projection showed 

two very close basins, which confirmed that there were separate metastable states. The 

PC2–PC3 projection, on the other hand, showed a wider distribution, which showed that 

states could change shape between adjacent states. The way the ligands are grouped to-

gether shows that ligand 11768 changes its shape during the simulation, moving between 

compact and slightly larger shapes in the protein-binding pocket (see Figure 10). 
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Figure 10. Portrayal of PCA plot and Free energy 2D & 3D plots for the ligand 11768. 

The free energy landscape supports this even more. The 2D FEL (RMSD vs. radius of 

gyration, Rg) shows a strong low-energy basin with RMSD values between 0.20 and 0.25 

nm and Rg values between 2.55 and 2.58 nm. This means that the complex is in a stable 

shape that gives it more energy. The 3D FEL supports this by showing a clear global min-

imum well with higher-energy barriers around it that keep the system in a small confor-

mational space. This indicates that ligand 11768 possesses a relatively stable binding 

mode. The protein and ligand both have stable structures over the 100 ns trajectory when 

compared to the RMSD time evolution. The protein Cα RMSD slowly goes up to about 

2.5–3.0 Å and then levels off. The ligand RMSD stays between 2.0 and 3.5 Å. This means 

that the ligand stays tightly bound while the pocket makes small changes. The FEL’s areas 

of lowest Gibbs free energy are important because they match up with the RMSD plateau 

phase. This shows that the tested equilibrium conformations are energetically favorable 

binding states. The PCA clusters’ slight flexibility is in line with ligand 11768’s physico-

chemical profile. This is because it has a lot of aromatic compounds and a polar surface 

area, which lets it interact in many ways while keeping the core binding stable. PCA 

shows that there is only a little conformational sampling with preferred metastable states. 

The FEL maps show a strong global minimum that shows a stable binding conformation, 

and the RMSD trends show that the protein-ligand stability stays the same. This compre-

hensive study demonstrates that ligand 11768 possesses a precisely defined, energetically 

favorable binding conformation with constrained yet significant conformational adapta-

bility. This balance is good for strong binding, but it also lets the protein pocket change 

shape over time. 

6. PCA & Free Energy Landscape Study of Ligand 15598 

Principal component analysis (PCA) and free energy landscape (FEL) profiling were 

used to look at the conformational dynamics of ligand 15598 in relation to its target pro-

tein. The results were then linked to root mean square deviation (RMSD) trajectories. The 

component analysis of Cartesian coordinate fluctuations showed that the system’s dy-

namics are mostly shown in the first two main components (see Figure 11). 
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Figure 11. Portrayal of PCA plot and Free energy 2D & 3D plots for the ligand 15598. 

The PC1–PC2 projection shows a clear separation of clusters, which suggests that 

ligand 15598 explores two main conformational states during the simulation. The states 

are successively occupied along the route, as evidenced by the color progression of frames, 

indicating dynamic transitions between metastable conformations rather than confine-

ment to a singular basin. The PC2–PC3 projection, on the other hand, has a more spread-

out distribution, which means that there are intermediate structural changes without clear 

cluster boundaries. The FEL plotted against RMSD and radius of gyration (Rg) shows a 

single global energy minimum at RMSD values of about 0.20–0.28 nm and Rg values of 

about 2.53–2.57 nm. There are also shallow local minima around this basin. The 3D FEL 

surface supports this by showing a deep, funnel-shaped well, which shows that a stable 

conformational ensemble is in charge and that ligand 15598 is safely inside the binding 

pocket. The free energy landscape (FEL) of 15598 shows that it is slightly more adaptable 

in terms of shape than ligand 11768. This is shown by the fact that the energy contours are 

wider but shallower, which means that the ligand is more flexible and has a higher sp3-

rich composition. The RMSD analysis supports this interpretation: The protein Cα RMSD 

stabilizes between 2.2 and 3.0 Å after the first 20 ns, while the ligand RMSD changes be-

tween 3.0 and 6.5 Å. This means that the ligand stays attached to the binding site while it 

moves around in conformational space, dynamically reorienting to keep beneficial inter-

actions. The RMSD plateaus match the free energy minima in the FEL, which means that 

the most energetically favorable states are also the ones where the binding conformations 

are stable. 

7. Conclusions 

In conclusion, this integrative computational study has shown that rational structure-

based methods can successfully find strong, drug-like inhibitors of TEAD proteins in the 

Hippo signaling pathway, which is an important target in cancer progression and 
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tumorigenesis. Using high-throughput virtual screening of the ChemDiv natural product 

library, eight compounds with good docking scores were chosen. Then, ADMET profiling 

showed that all of the candidates followed Lipinski’s rules, which means they have a lot 

of potential for oral bioavailability. Among these, ligands 11768 and 15598 were identified 

as the foremost candidates, exhibiting notably advantageous pharmacokinetic character-

istics, such as impermeability to the blood-brain barrier and lack of P-glycoprotein sub-

strate liability, consequently minimizing central nervous system exposure and the risk of 

multidrug resistance. Comprehensive docking interaction analyses demonstrated that 

compound 11768 exhibited an exceptional binding profile, characterized by numerous sta-

bilizing hydrogen bonds with GLN320, ARG352, and ARG361, extensive hydrophobic in-

teractions with TYR350, ARG364, and ASP404, and a robust π–cation interaction with 

ARG361, culminating in a significantly negative MMGBSA binding free energy (ΔGbind 

= −55.86 kcal/mol). On the other hand, compound 15598 had a more limited interaction 

spectrum. It relied on fewer hydrogen bonds, had fewer hydrophobic contacts, only one 

π–cation interaction, and a salt bridge to ASP404. This made it less favorable, with a ΔG-

bind of −45.90 kcal/mol, which shows that 11768 has a stronger affinity. Molecular dynam-

ics simulations confirmed these results, showing that ligand 11768 maintained stable con-

formations with little change in RMSD, which meant that it was always interacting with 

the binding site. On the other hand, ligand 15598 showed more conformational variability 

and partial disengagement throughout the trajectory, which was in line with its lower 

binding stability. RMSF analysis showed that ligand 11768 significantly decreased local 

flexibility in the binding corridor, showing that the pocket-lining residues were mechani-

cally stable. On the other hand, ligand 15598 allowed for more plasticity, showing that the 

interaction network was more flexible. Complementary PCA and FEL analyses confirmed 

that 11768 occupied deep global energy minima with restricted conformational transi-

tions, indicating a highly favored binding mode, whereas 15598 navigated broader con-

formational states with multiple shallow minima, implying enhanced flexibility but re-

duced stability. ADME tests showed that compound 15598, which had a lower molecular 

weight, more sp3 character, and better solubility, was a better “lead-likeness” and had 

lower risks of metabolic liability. On the other hand, compound 11768 had a higher bind-

ing affinity, but it also had the potential to inhibit CYP and cause moderate permeability 

problems. The findings reveal two outcomes: compound 11768 functions as a high-affinity 

scaffold with exceptional binding stability, positioning it as an optimal candidate for op-

timization as a potent TEAD inhibitor; conversely, compound 15598 offers improved 

pharmacokinetic balance and synthetic accessibility, establishing it as a more druggable 

“lead-like” candidate for expedited translational advancement. The synergistic strengths 

of these molecules underscore the imperative to integrate binding energetics, conforma-

tional dynamics, and pharmacokinetic profiling during the preliminary stages of drug 

discovery, thereby creating a robust foundation for preclinical validation and optimiza-

tion of TEAD-targeted therapeutics. This paper presents a framework for accelerating the 

development of TEAD inhibitors, a novel category of anticancer agents targeting the 

Hippo pathway, by demonstrating that scaffolds derived from natural products can 

achieve both stability and drug-likeness through systematic computational screening. 
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