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Abstract

Computational and machine learning approaches are playing a pivotal role in the identi-
fication, characterization, and targeting of noncanonical DNA structures, including G-
quadruplexes, Z-DNA, hairpins, and triplexes. These configurations play critical roles in
maintaining genomic stability, facilitating DNA repair, and regulating chromatin organi-
zation. Although the human genome predominantly adopts the B DNA conformation,
evidence indicates that non-B DNA forms exert significant influence on gene expression
and disease development. This highlights the need for dedicated computational frame-
works to systematically investigate these alternative structures. Machine learning models
encompassing supervised and unsupervised algorithms such as K Nearest Neighbours,
Support Vector Machines, and deep learning architectures including Convolutional Neu-
ral Networks have shown considerable potential in predicting sequence motifs predis-
posed to forming non-B DNA conformations. These predictive tools contribute to identi-
fying genomic regions associated with disease susceptibility. Complementary bioinfor-
matics platforms and molecular docking tools, notably Auto Dock, along with chemical
libraries like ZINGC, facilitate the virtual screening of small molecules targeting specific
DNA structures. Stabilizers of G quadruplexes, exemplified by CX 5461, have demon-
strated therapeutic promise in BRCA deficient cancers, highlighting the translational im-
pact of computational methods on drug discovery. Anticipating DNA structural shifts
opens new avenues in personalized medicine for complex diseases, with computational
chemistry and machine learning deepening our understanding of DNA topology and
guiding smarter ligand design. The integrated approach proposed in this review ad-
dresses the previous studies done in this field and highlights the current limitations in
structural genomics and advances the development of precision therapeutics aligned with
individual genomic profiles.
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1. Introduction

The human genome primarily exists as right-handed B-DNA, featuring 10 base pairs
per turn and distinct major and minor grooves that facilitate essential protein-DNA inter-
actions during transcription and replication. However, DNA polymorphism allows the
formation of non-canonical structures such as triplex DNA, Z-DNA, hairpins, G-quadru-
plexes, and cruciform DNA. These structures, influenced by nucleotide sequence, ligand
binding, hydration, and super helical stress, are involved in replication, recombination,
transcription, DNA repair, nucleosome assembly, and genome organization [1].

Triplex DNA was first described in 1957 when a third strand was found to bind along
the major groove of a DNA duplex via Hoogsteen hydrogen bonding. Triplexes can be
intermolecular or intramolecular. In H-DNA, the purine strand of the duplex folds back
to pair with the pyrimidine strand in a parallel or antiparallel alignment. G-quadruplexes
are non-canonical structures formed by guanine-rich sequences stabilized through
Hoogsteen bonding between stacked G-tetrads (Burge et al., 2006). They are commonly
found at telomeres and transcription start sites, where they influence gene regulation.
Their regulatory role is conserved across diverse organisms and is linked to cancer, dif-
ferentiation, and metabolism [2]. Z-DNA is a left-handed double helix that forms in alter-
nating purine-pyrimidine sequences, particularly GC-rich regions, under physiological
stress or in the presence of specific ions or chemicals. Z-DNA is stabilized by proteins such
as the Zao domain of ADAR1 and ZBP1, and destabilized by agents like Actinomycin D
and Distamycin A. The BZ junction marks the transition between B- and Z-DNA and is
formed in negatively supercoiled regions generated during transcription [3].

Hairpin DNA forms when a single strand folds into a stem-loop via complementary
base pairing, typically at palindromic sequences. These structures can form during repli-
cation or repair processes, and longer palindromes are linked to genetic instability. In his-
tone mRNA, hairpins are essential for 3’ end processing, export, and translation, with key
roles played by hairpin-binding protein and U7 snRNP [4].

Cruciform DNA arises from inverted repeat sequences and features stem-loop struc-
tures at a central branch point [5]. Found near promoters and replication origins, cruci-
forms facilitate chromatin remodelling, transcription, and genome stability by enabling
DNA-protein interactions and bringing distant DNA elements into proximity.
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Figure 1. Non-Canonical DNA Structures.
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2. Genome-Wide Databases and Computational Resources for DNA
Structures

G-quadruplexes (G4s) are non-canonical, four-stranded structures that form in gua-
nine-rich nucleic acids. The basic structural unit of a G4 is the G-tetrad —a planar arrange-
ment of four guanine bases stabilized by Hoogsteen hydrogen bonds. With the increasing
identification of G4-forming RNAs, various tools have been developed to aid in the struc-
tural determination of G4 DNA and RNA. In the field of bioinformatics, several tools have
been introduced to predict G4 structures across different nucleic acid types. These tools
are capable of analyzing molecular dynamics, calculating free energy, and performing
molecular docking simulations to evaluate the stability and functional relevance of G4
structures [6]. Non-B DB is a comprehensive database containing predictions of 3,864,596
non-B DNA structures, including G-quadruplex motifs, across 12 mammalian genomes,
including the human genome. It offers advanced search capabilities, allowing users to fil-
ter by species, DNA structure class, chromosome, gene type, and chromosomal location.
Additional filters include sequence composition, motif type, and nucleotide tracts, ena-
bling in-depth exploration of non-B DNA motifs. G4Hunter is a widely used predictive
tool for identifying putative G-quadruplex sequences (PQS) in DNA or RNA, based on G-
richness and G-skewness, the fraction of guanines in a sequence, and the G/C ratio be-
tween DNA strands [5]. Users can customize the search window size and threshold val-
ues, assigning weighted scores to guanine residues (e.g., G = 1, GG = 2) to refine predic-
tions.

Non-B DNA structures arise when DNA deviates from the classical Watson-Crick B-
form, often due to specific sequence motifs or environmental conditions. These alternative
conformations can impair replication, increase error rates, and promote mutagenesis,
leading to genome-wide variation in mutation rates. Motifs capable of forming non-B
structures range from a few bases to several hundred nucleotides and are randomly dis-
tributed across the genome [7]. They are known to disrupt replication and transcription,
contributing to genomic instability, particularly in cancer. In silico tools such as G4Hunter,
R-loop tracker, and other structure-predicting algorithms can identify overlaps between
G-quadruplexes, R-loops, and other non-B structures. These tools use algorithms that se-
lect common overlapping regions to optimize memory and computational efficiency [8].
Mapping G4-forming regions genome-wide allows researchers to identify G-quadru-
plexes in key regulatory areas such as promoters, telomeres, and untranslated regions
(UTRs)—sites often linked to gene regulation. Furthermore, small molecules that stabilize
or destabilize G4 structures are being explored as therapeutic agents, particularly in on-
cogenes like MYC or in telomeric regions. G4Hunter is instrumental in pinpointing prom-
ising G4 targets for drug development.

Table 1. Key databases with the type of structures, data sources, and key features.

Type of Structures

Experimental Vali-

Database Cataloged Data Sources dation Key Features References
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bralszldl(cz)?l (sz(;ﬁ;ge Predict potential

G4Hunter G-quadruplex (G4) Genomic sequences 5 G4-forming se- [5,9]

content and se-
quences,
quence)
Various non-B Genomic sequences Experimental data collection of non-B
Non-B DNA DNA structures (Z- g, hur(}nan, integrated along- DNA motifs, links [10]

DNA, G4, triplexes,
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Experimental data

Human genome .
& " from literature and

Contains experi-

QuadBase2 G-quadruplex (G4) model organisms high-throughput mentally validated [11]
(plants, yeast, etc.) ; G-quadruplex
sequencing
Triplex-forming ol- . .
. . . Genomic sequences Based on sequence  Detect triplex
Triplex- igonucleotides o
. (custom uploads, features, insilico DNA, gene regula- [11]
Inspector (TFOs) and triplex . . )
DNA model organisms) predictions tion

3. Machine Learning and Bioinformatics Approaches for Predicting
Non-B DNA Structures

Machine Learning for Detecting Gene-Gene Interactions: Machine learning (ML) is a
subfield of computer science and artificial intelligence that focuses on developing
algorithms capable of learning from data and making predictions. In genetics, ML can be
used to predict phenotypes (such as traits or disease risks) from biomarkers like DNA
sequences, making it a supervised learning problem where the genotype is the input and
the phenotype is the output [12]. Machine learning is broadly categorized into three types
that is supervised learning to learn from labeled training data to predict outcomes on new,
unseen data. It maps input features to known outputs, enabling the model to make
accurate predictions, and unsupervised learning that works with unlabeled data to
identify patterns or groupings without predefined outcomes. It is used in clustering and
dimensionality reduction and reinforcement learning, which involves learning through
interaction with an environment, where the algorithm improves its decisions over time
based on feedback or rewards [13].

3.1. Common Machine Learning Algorithms in Genomics
3.1.1. K-Nearest Neighbors (KNN)

KNN is a supervised learning algorithm used for classification and regression. It
classifies a data point based on the majority class among its K nearest neighbors in the
feature space. The distance metric and the value of K are critical to performance. KNN is
simple and effective for datasets where similar instances belong to the same class [13].

3.1.2. Artificial Neural Networks (ANNSs)

ANNSs are inspired by the biological brain and consist of layers of interconnected
neurons. They are effective for pattern recognition and classification tasks. Multi-layer
perceptrons (MLPs), functional link ANNs, and two-class SVMs have been used to
identify novel disease genes using topological features from protein—protein interaction
(PPI) networks. ANNs have also been applied to gene expression datasets to distinguish
between disease states [14].

3.1.3. Convolutional Neural Networks (CNNs)

CNNs are a type of deep learning architecture primarily used in image classification,
including clinical and biological imaging. CNNs capture spatial relationships between
features and are robust to transformations such as scaling and translation. They are
increasingly used for biomarker discovery and disease prediction [15].

3.1.4. Random Forest (RF)

Random Forest is a supervised ensemble learning method based on decision trees. It
uses the bagging technique to train multiple decision trees and aggregates their results for
improved prediction accuracy. Random Forests are known for their robustness and ability
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to handle high-dimensional genomic data. In one study, it achieved 94.74% accuracy in a
binary classification task.

3.1.5. Support Vector Machines (SVMs)

SVMs are kernel-based classifiers that find the optimal hyperplane separating data
into distinct groups. They are widely used in bioinformatics due to their high accuracy
and ability to model complex, high-dimensional data. SVMs are particularly effective in
identifying subtle differences between biological classes.

Machine learning techniques, when applied to gene-gene interaction studies, can
uncover complex relationships within genomic data. By learning from large-scale, high-
throughput datasets, these models facilitate the discovery of novel biomarkers, disease-
associated genes, and predictive genomic signatures, making them essential tools in
personalized medicine and genomic research.

The machine learning models leverage sequence-intrinsic features such as G-tract
length, loop composition, and flanking nucleotide context that correlate with the
propensity for adopting specific topologies rather than assuming a single static fold. This
design enables the model to capture the conformational diversity inherent to polymorphic
non-canonical DNA structures. Recent studies have shown that sequence-derived
information alone can predict G-quadruplex (G4) topology with high accuracy. Ref. [16]
provided evidence that G4ShapePredictor can predict parallel, antiparallel, and hybrid G4
structures using 482 distinct sequence—topology pairs that were validated in the lab. The
results provide confidence that patterns encoded into the sequence can predict the
dominant conformations that will be adopted in a biological setting, reinforcing the
reliability of computational models for even DNA architectures that are dynamically
equilibrating or equilibrium conformations.

Table 2. Machine Learning Techniques and Models for Detecting Gene Abnormalities.

Technique Model Used Purpose Accuracy Reference
- : Predict G-quadruplex-
Prediction of G- Convolutional Neural forming regions in 95.2% (AUC-ROC) [17]
quadruplexes Network (CNN)
DNA sequences

G4Boost: quadruplex
identification and
stability prediction

XGBoost regression

Determine the
sequences, nucleotide
compositions, and
estimated structural 93% [18]
topologies of G4 motifs
to forecast their
secondary structure

model

convolution neural net- DeepZ—Developed

works (CNN), using chromosome
Using omics data, a accessibility,
method for predicting Recurrent neural net- transcription 86.6°% [19]
functional Z-DNA works (RNN), factor/RNA o
areas polymerase binding,
Hybrid CNN-RNN  and epigenetic marker
models maps
Identifying proteins Random Forest, “DNAPred_Prot”
that bind to DNA DNA-bindi tei
that bind to DN Support Vector NA-binding protein 91.47% [20]
using features based on . using sequence
s Machine
composition and features.
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position is the focus of
DNAPred_Prot.

IoMT-based prediction
of mitochondrial and
inherited illnesses

Artificial Neural
Network
support vector
machine (SVM) Analysis of genetic
data for early and 94.99% [21]

K-Nearest Neighbor ~ accurate diagnosis.

(KNN)

4. Applications of DNA Structure Prediction in Medicine and Disease

Prediction of DNA structure has become pivotal to contemporary biology and
medicine, enhancing disease mechanism insights and enabling the formulation of
targeted treatments. Methods like AlphaFold have revolutionized structural biology by
allowing massive protein and DNA structure predictions [16]. In cancer, mutations in
genes and chromosomes affect normal protein behavior, and structure prediction assists
in the identification of oncogenes, inhibitor design, and the targeting of immunotherapies.
Correspondingly, in neurodegenerative diseases, structural defects like repeat expansions
in Huntington’s disease or methylation pattern changes in Alzheimer’s disease emphasize
the need for predictive models in revealing disease mechanisms and therapeutic targets
[23,24]. In addition to disease-specific applications, DNA structure prediction supports
personalized medicine, where mutation profiling and pharmacogenomics facilitate
precision oncology and drug response prediction in individual patients [25]. Collectively,
these uses prove its power to transform diagnostics, drug discovery, and precision
healthcare.

5. Conclusions and Future Directions

Research on non-canonical DNA structures such as G-quadruplexes, Z-DNA,
hairpins, and triplexes has transformed our understanding of genome regulation,
especially their roles in DNA repair, genetic stability, and transcriptional control. The use
of computational methods and machine learning has become key in identifying these
structures, studying their ligand interactions, and revealing their functional importance.
Combining specialized databases with advanced machine learning models improves the
classification and interpretation of genomic data, leading to more accurate predictions of
non-B DNA motifs.

Future efforts should focus on refining computational methods to better capture the
dynamics and biological roles of these structures. Expanding algorithmic capabilities and
incorporating more diverse, high-quality datasets will further enhance model
performance and predictive power. These advances may pave the way for novel
therapeutic strategies, particularly in cancer and neurodegenerative diseases. The
integration of Al, big data analytics, and bioinformatics tools in DNA structural research
holds great promise for personalized medicine. Tailoring treatments based on an
individual’s unique genomic architecture can revolutionize disease diagnosis and
management. Ultimately, continued exploration of the relationship between DNA
structure and function will be essential for unlocking new therapeutic avenues and
improving patient outcomes in precision medicine.
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