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Abstract

Cytochrome P450 1B1 (CYP1B1) is an important anticancer target due to its overexpres-
sion in tumors and role in carcinogen metabolism. In this work we attempted to build a
first-generation QSAR model for 63 synthesized inhibitors using Quantum Chemical De-
scriptors (QCD) and Thermodynamic Descriptors (TCD) derived from xTB calculations.
After descriptor reduction was done by multicollinearity analysis and recursive feature
elimination (RFE). was built with eight selected descriptors. Validation included k-fold
cross-validation, leave-one-out CV, bootstrapping, Y-randomization, and applicability
domain analysis. The Among different classifiers cross validation (CV) Support Vector
Classifier (rbf kernel) model showed promising internal validation (accuracy ~0.72, ROC-
AUC ~0.79), but stringent validations revealed bias toward predicting actives (recall ~1.0,
ROC-AUC collapse). Y-randomization confirmed the non-random nature of the struc-
ture—activity relationship, while the Williams plot indicated most compounds were within
the applicability domain. Although preliminary, this work demonstrates the feasibility of
quantum descriptor-based QSAR modeling of CYP1B1 inhibitors and outlines pathways
for improving model balance and predictive power

Keywords: CYP1B1 inhibitors; QSAR modeling; quantum chemical descriptors;
thermodynamic descriptors; machine learning; cross-validation; Y-randomization;
applicability domain

1. Introduction

Cytochrome P450 1B1 (CYP1B1) is a heme-containing enzyme involved in the me-
tabolism of xenobiotics and endogenous substrates. Overexpression of CYP1B1 has been
reported in several cancers, including breast, prostate, and ovarian cancer, where it con-
tributes to the activation of procarcinogens into reactive quinones [1]. Selective inhibition
of CYP1B1 has therefore emerged as a promising anticancer strategy [2]. Computational
modeling plays a vital role in early-stage drug discovery by prioritizing compounds for
experimental testing. In particular, Quantitative Structure—Activity Relationship (QSAR)
modeling provides a mathematical framework that correlates chemical structure with bi-
ological activity [3]. QSAR has traditionally relied on 2D and 3D descriptors such as top-
ological indices, molecular fingerprints, and geometric parameters. While these ap-
proaches have been successful, they may not fully capture the electronic, quantum, and
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thermodynamic properties that govern enzyme-ligand interactions [4]. Recent studies
have highlighted the importance of integrating quantum chemical descriptors (e.g.,
HOMO, LUMO, energy gaps, molecular charges) and thermodynamic parameters (e.g.,
enthalpy, entropy, Gibbs free energy) into QSAR models, as they offer deeper physico-
chemical insights [5]. The semi-empirical extended tight-binding (xTB) method provides
a computationally efficient framework for extracting such descriptors, making it suitable
for medium-sized QSAR datasets [6]. In this work, we tried to build a first-generation
QSAR classification model for CYP1B1 inhibitors using quantum chemical and thermo-
dynamic descriptors derived from xTB calculations. A dataset of 63 compounds synthe-
sized and tested in a single laboratory was employed to ensure biological consistency [7-
9]. We evaluated the model using multiple validation approaches, including k-fold cross-
validation, leave-one-out CV, Y-randomization, bootstrapping, and applicability domain
analysis. Our objective was not only to assess predictive performance but also to critically
analyze the limitations and future improvements required for deploying quantum de-
scriptor-based QSAR models.

2. Materials and Methods

The dataset consisted of 63 CYP1B1 inhibitors, for which experimentally determined
ICso values were converted into pICso for uniformity. Molecular descriptors were gener-
ated using the xTB framework on Google Colab, which provided a free and reproducible
cloud-based computational environment. The descriptors included quantum properties
(HOMO, LUMO, energy gap, gradient norm), charge descriptors (maximum, minimum,
and range of atomic charges, and sum of absolute charges), and thermodynamic parame-
ters such as zero-point energy (ZPE), enthalpy, entropy, Gibbs free energy, and heat ca-
pacity (Cv). To reduce redundancy and multicollinearity, descriptors were subjected to
variance inflation factor (VIF) analysis and recursive feature elimination (RFE), yielding a
final subset of eight informative descriptors. A Support Vector Classifier (SVC) with a
radial basis function kernel was employed for model development. Model performance
was rigorously assessed using 10-fold cross-validation, leave-one-out CV (LOOCV), Y-
randomization, bootstrapping (100 iterations), and applicability domain analysis using
the Williams plot.

.3. Results

The performance of six machine learning classifiers was evaluated using 10-fold
cross-validation on the dataset of 63 CYP1B1 inhibitors. Random Forest gave the highest
accuracy (0.846) and F1 score (0.889), with an excellent ROC-AUC of 0.9875, followed by
Gradient Boosting and XGBoost (accuracy 0.769, F1 0.842). KNN also showed good per-
formance (accuracy 0.769, ROC-AUC 0.913). Logistic Regression achieved lower accuracy
(0.692) but maintained perfect recall (1.0). The SVC model displayed the lowest accuracy
(0.615), although it produced an ROC-AUC of 1.0, suggesting issues with probability cal-
ibration rather than genuine separation.

Cross-Validation Metrics

Table 1 highlights key differences among the classifiers. Ensemble approaches such
as Random Forest, Gradient Boosting, and XGBoost consistently outperformed single al-
gorithms, reflecting their ability to reduce variance and capture complex, non-linear rela-
tionships. Random Forest emerged as the most balanced model, combining high accuracy
and F1 score with excellent ROC-AUC.

Table 1. Performance of classifiers under 10-fold cross-validation.
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Model Accuracy Precision Recall F1 ROC-AUC
Ssindom For- 0.846 0.800 1.000 0.889 0.9875
Gradient 0.769 0.727 1.000 0.842 0.9500
Boosting

XGBoost 0.769 0.727 1.000 0.842 0.8750
KNN (k = 5) 0.769 0.778 0.875 0.824 0.9125
Logistic Re- 0.692 0.667 1.000 0.800 0.7250
greSSIOn

SVC (RBF) 0.615 0.615 1.000 0.762 1.0000

Values represent mean performance metrics from 10-fold cross-validation. ROC-AUC = area under

the receiver operating characteristic curve. SVC = Support Vector Classifier.

In contrast, Logistic Regression and SVC illustrate the limitations of linear and mar-
gin-based classifiers. Logistic Regression achieved perfect recall but sacrificed accuracy
and AUC, indicating a strong bias toward predicting the active class. The SVC model gave
the lowest accuracy overall, and its apparent ROC-AUC of 1.0 likely reflects calibration
artifacts rather than genuine separation.

The KNN classifier performed moderately well, showing that local similarity in de-
scriptor space can partially capture activity trends, but ensemble methods offered supe-
rior generalization.

The superiority of ensemble methods is further illustrated in the ROC curves (Figure
1), where Random Forest and Gradient Boosting exhibit the most distinct separation be-
tween classes. In addition, the Y-randomization test (Figure 2) confirms that the observed
predictive performance is not due to chance: accuracies of randomized models cluster
around 0.5, whereas the actual model remains substantially higher, indicating a genuine
structure—activity signal.

Figure 3 shows the Williams plot for applicability domain analysis. The majority of
compounds fall within the critical leverage threshold and the +3 standardized residuals
boundary, indicating that the model is applicable to most of the dataset. Only a few com-
pounds were identified as potential outliers, suggesting that predictions are generally re-
liable within the studied chemical space.
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ROC Curves for Six Classifiers (10-fold CV)
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Figure 1. ROC curves for six classifiers under 10-fold cross-validation.
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Figure 2. Y-randomization histogram comparing real vs randomized accuracies.
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Figure 3. Williams plot to show the applicability domain.
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Abbreviations

The following abbreviations are used in this manuscript:
CYP1B1 Cytochrome P450 1B1

QSAR Quantitative Structure—-Activity Relationship
QCD Quantum Chemical Descriptors

TCD Thermodynamic Descriptors

xTB Extended Tight-Binding method

RFE Recursive Feature Elimination

Ccv Cross-Validation

ROC-AUC Receiver Operating Characteristic — Area Under the Curve
SvC Support Vector Classifier

RBF Radial Basis Function (kernel)

KNN k-Nearest Neighbors

LOOCV Leave-One-Out Cross-Validation

ZPE Zero-Point Energy

VIF Variance Inflation Factor

ICso Half-maximal inhibitory concentration

pICso Negative logarithm of IC50 (—log;0IC50)

Cv Heat Capacity at constant volume
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