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Abstract 

Cytochrome P450 1B1 (CYP1B1) is an important anticancer target due to its overexpres-

sion in tumors and role in carcinogen metabolism. In this work we attempted to build a 

first-generation QSAR model for 63 synthesized inhibitors using Quantum Chemical De-

scriptors (QCD) and Thermodynamic Descriptors (TCD) derived from xTB calculations. 

After descriptor reduction was done by multicollinearity analysis and recursive feature 

elimination (RFE). was built with eight selected descriptors. Validation included k-fold 

cross-validation, leave-one-out CV, bootstrapping, Y-randomization, and applicability 

domain analysis. The Among different classifiers cross validation (CV) Support Vector 

Classifier (rbf kernel) model showed promising internal validation (accuracy ~0.72, ROC-

AUC ~0.79), but stringent validations revealed bias toward predicting actives (recall ~1.0, 

ROC-AUC collapse). Y-randomization confirmed the non-random nature of the struc-

ture–activity relationship, while the Williams plot indicated most compounds were within 

the applicability domain. Although preliminary, this work demonstrates the feasibility of 

quantum descriptor-based QSAR modeling of CYP1B1 inhibitors and outlines pathways 

for improving model balance and predictive power 
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1. Introduction 

Cytochrome P450 1B1 (CYP1B1) is a heme-containing enzyme involved in the me-

tabolism of xenobiotics and endogenous substrates. Overexpression of CYP1B1 has been 

reported in several cancers, including breast, prostate, and ovarian cancer, where it con-

tributes to the activation of procarcinogens into reactive quinones [1]. Selective inhibition 

of CYP1B1 has therefore emerged as a promising anticancer strategy [2]. Computational 

modeling plays a vital role in early-stage drug discovery by prioritizing compounds for 

experimental testing. In particular, Quantitative Structure–Activity Relationship (QSAR) 

modeling provides a mathematical framework that correlates chemical structure with bi-

ological activity [3]. QSAR has traditionally relied on 2D and 3D descriptors such as top-

ological indices, molecular fingerprints, and geometric parameters. While these ap-

proaches have been successful, they may not fully capture the electronic, quantum, and 
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thermodynamic properties that govern enzyme–ligand interactions [4]. Recent studies 

have highlighted the importance of integrating quantum chemical descriptors (e.g., 

HOMO, LUMO, energy gaps, molecular charges) and thermodynamic parameters (e.g., 

enthalpy, entropy, Gibbs free energy) into QSAR models, as they offer deeper physico-

chemical insights [5]. The semi-empirical extended tight-binding (xTB) method provides 

a computationally efficient framework for extracting such descriptors, making it suitable 

for medium-sized QSAR datasets [6]. In this work, we tried to build a first-generation 

QSAR classification model for CYP1B1 inhibitors using quantum chemical and thermo-

dynamic descriptors derived from xTB calculations. A dataset of 63 compounds synthe-

sized and tested in a single laboratory was employed to ensure biological consistency [7–

9]. We evaluated the model using multiple validation approaches, including k-fold cross-

validation, leave-one-out CV, Y-randomization, bootstrapping, and applicability domain 

analysis. Our objective was not only to assess predictive performance but also to critically 

analyze the limitations and future improvements required for deploying quantum de-

scriptor-based QSAR models. 

2. Materials and Methods 

The dataset consisted of 63 CYP1B1 inhibitors, for which experimentally determined 

IC50 values were converted into pIC50 for uniformity. Molecular descriptors were gener-

ated using the xTB framework on Google Colab, which provided a free and reproducible 

cloud-based computational environment. The descriptors included quantum properties 

(HOMO, LUMO, energy gap, gradient norm), charge descriptors (maximum, minimum, 

and range of atomic charges, and sum of absolute charges), and thermodynamic parame-

ters such as zero-point energy (ZPE), enthalpy, entropy, Gibbs free energy, and heat ca-

pacity (Cv). To reduce redundancy and multicollinearity, descriptors were subjected to 

variance inflation factor (VIF) analysis and recursive feature elimination (RFE), yielding a 

final subset of eight informative descriptors. A Support Vector Classifier (SVC) with a 

radial basis function kernel was employed for model development. Model performance 

was rigorously assessed using 10-fold cross-validation, leave-one-out CV (LOOCV), Y-

randomization, bootstrapping (100 iterations), and applicability domain analysis using 

the Williams plot. 

.3. Results 

The performance of six machine learning classifiers was evaluated using 10-fold 

cross-validation on the dataset of 63 CYP1B1 inhibitors. Random Forest gave the highest 

accuracy (0.846) and F1 score (0.889), with an excellent ROC-AUC of 0.9875, followed by 

Gradient Boosting and XGBoost (accuracy 0.769, F1 0.842). KNN also showed good per-

formance (accuracy 0.769, ROC-AUC 0.913). Logistic Regression achieved lower accuracy 

(0.692) but maintained perfect recall (1.0). The SVC model displayed the lowest accuracy 

(0.615), although it produced an ROC-AUC of 1.0, suggesting issues with probability cal-

ibration rather than genuine separation. 

Cross-Validation Metrics 

Table 1 highlights key differences among the classifiers. Ensemble approaches such 

as Random Forest, Gradient Boosting, and XGBoost consistently outperformed single al-

gorithms, reflecting their ability to reduce variance and capture complex, non-linear rela-

tionships. Random Forest emerged as the most balanced model, combining high accuracy 

and F1 score with excellent ROC-AUC. 

Table 1. Performance of classifiers under 10-fold cross-validation. 
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Model Accuracy Precision Recall F1 ROC-AUC 

Random For-

est 
0.846 0.800 1.000 0.889 0.9875 

Gradient 

Boosting 
0.769 0.727 1.000 0.842 0.9500 

XGBoost 0.769 0.727 1.000 0.842 0.8750 

KNN (k = 5) 0.769 0.778 0.875 0.824 0.9125 

Logistic Re-

gression 
0.692 0.667 1.000 0.800 0.7250 

SVC (RBF) 0.615 0.615 1.000 0.762 1.0000 

Values represent mean performance metrics from 10-fold cross-validation. ROC-AUC = area under 

the receiver operating characteristic curve. SVC = Support Vector Classifier. 

In contrast, Logistic Regression and SVC illustrate the limitations of linear and mar-

gin-based classifiers. Logistic Regression achieved perfect recall but sacrificed accuracy 

and AUC, indicating a strong bias toward predicting the active class. The SVC model gave 

the lowest accuracy overall, and its apparent ROC-AUC of 1.0 likely reflects calibration 

artifacts rather than genuine separation. 

The KNN classifier performed moderately well, showing that local similarity in de-

scriptor space can partially capture activity trends, but ensemble methods offered supe-

rior generalization. 

The superiority of ensemble methods is further illustrated in the ROC curves (Figure 

1), where Random Forest and Gradient Boosting exhibit the most distinct separation be-

tween classes. In addition, the Y-randomization test (Figure 2) confirms that the observed 

predictive performance is not due to chance: accuracies of randomized models cluster 

around 0.5, whereas the actual model remains substantially higher, indicating a genuine 

structure–activity signal. 

Figure 3 shows the Williams plot for applicability domain analysis. The majority of 

compounds fall within the critical leverage threshold and the ±3 standardized residuals 

boundary, indicating that the model is applicable to most of the dataset. Only a few com-

pounds were identified as potential outliers, suggesting that predictions are generally re-

liable within the studied chemical space. 
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Figure 1. ROC curves for six classifiers under 10-fold cross-validation. 

 

Figure 2. Y-randomization histogram comparing real vs randomized accuracies. 
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Figure 3. Williams plot to show the applicability domain. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CYP1B1 Cytochrome P450 1B1 

QSAR Quantitative Structure–Activity Relationship 

QCD Quantum Chemical Descriptors 

TCD Thermodynamic Descriptors 

xTB Extended Tight-Binding method 

RFE Recursive Feature Elimination 

CV Cross-Validation 

ROC-AUC Receiver Operating Characteristic – Area Under the Curve 

SVC Support Vector Classifier 

RBF Radial Basis Function (kernel) 

KNN k-Nearest Neighbors 

LOOCV Leave-One-Out Cross-Validation 

ZPE Zero-Point Energy 

VIF Variance Inflation Factor 

IC50 Half-maximal inhibitory concentration 

pIC50 Negative logarithm of IC50 (−log₁₀IC50) 

Cv Heat Capacity at constant volume 
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