

Design and In Silico Profiling of Semi-Synthetic Abietane Diterpenoids with Promising Anticancer Activity

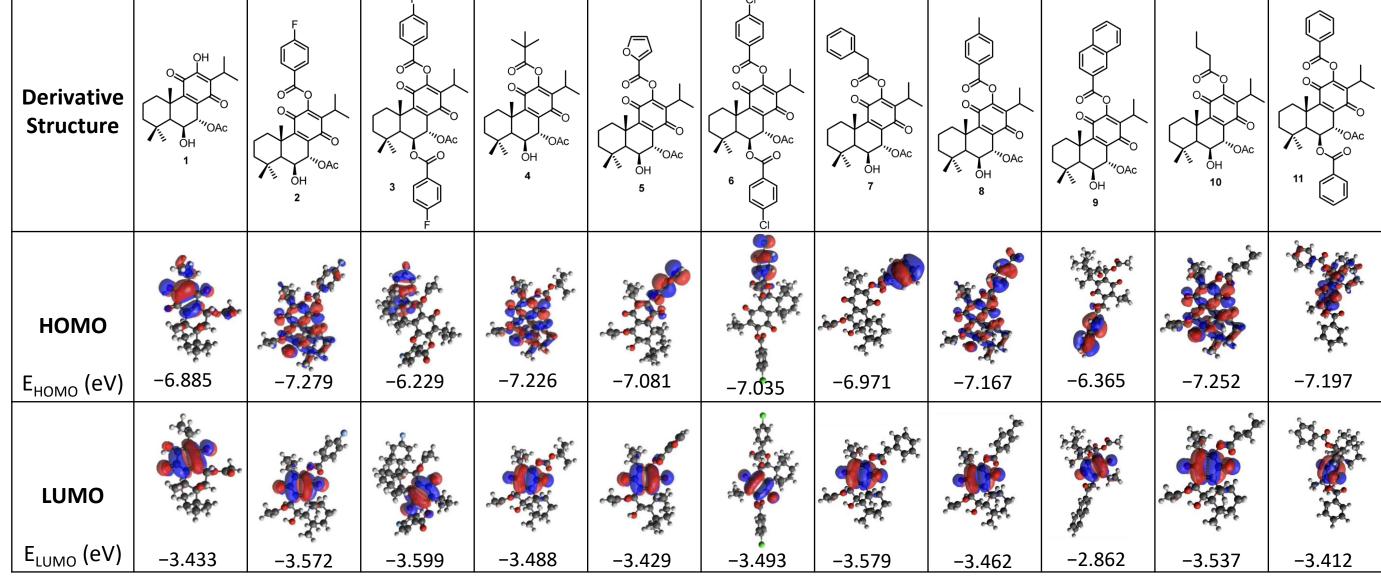
Vera M. S. Isca¹, Przemysław Sitarek², Anna Merecz-Sadowska^{3,4}, Magdalena Małecka⁵, Monika Owczarek⁶, Joanna Wieczfinska⁷, Radosław Zajdel^{3,8}, Paweł Nowak³, Tomasz KowalczyK¹⁰ and Patricia Rijo^{1,9*}

1 CBIOS, Universidade Lusófona, Lisbon, Portugal; 2 Department of Medical Biology, Medical University of Lodz, Poland; 3 Department of Economic and Medical Informatics, University of Lodz, Poland; 4 Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Poland; 5 Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Poland; 6 Łukasiewicz Research Network, Lodz Institute of Technology, Poland; 7 Department of Immunopathology, Medical University of Lodz, Poland; 8 Department of Medical Informatics and Statistics, Medical University of Lodz, Poland; 9 iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Portugal; 10 Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.

Introduction

Plants: Important source of bioactive molecules.

Plectranthus genus (Lamiaceae): Rich in cytotoxic abietane diterpenoids. 7α -Acetoxy-6 β -hydroxyroyleanone (**Roy 1**) isolated from *P. grandidentatus* Gürke demonstrates notable cytotoxicity across cancer cell lines. To enhance its anticancer potential, a series of semi-synthetic Roy derivatives were synthesized and examined through comprehensive in silico analyses.

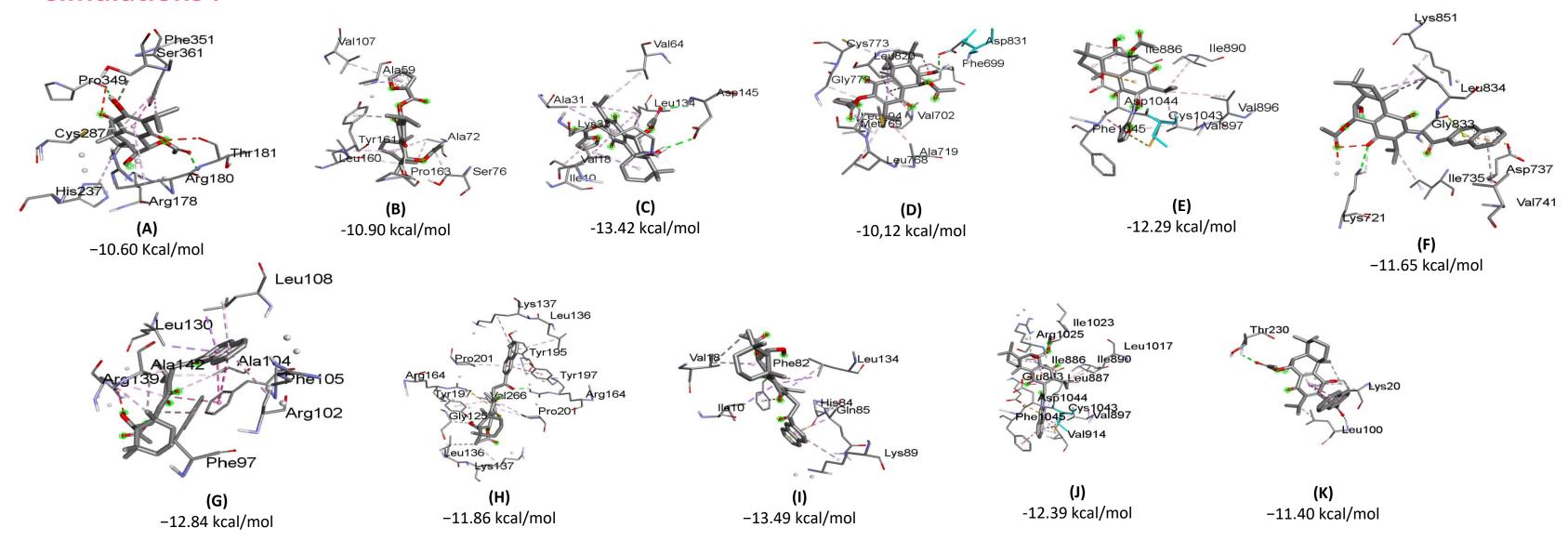

Methods and Results

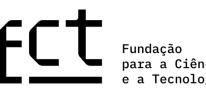
ADMET and Drug-Likeness Analysis Results:

- Compounds 1 and 10 followed all five filters (Lipinski, Ghose, Veber, Egan, and Muegge).
- The calculated bioavailability score for all compounds placed them within the 56% probability class.

Molecular docking and MD simulations:

DFT Calculations: Table 1. HOMO-LUMO diagram of compound 1 and derivatives (2-11) synthetized from 1. The LUMO energy refers to the electron-accepting aptitude of a molecule while the HOMO energy determines its electrondonating ability. A smaller HOMO-LUMO gap indicates a more polarizable molecule with lower kinetic stability and higher chemical reactivity.




Figure 2. Interaction and binding energy between compounds (1, 5 and 9) and the active sites of target proteins implicated in cancer-related pathway. Compound 1 against caspase 9 (A); compound 5 against BCL-2 (B), CDK2 (C), EGFR (D) and VEGFR (E); compound 9 against EGFR (F), BCL-XL (G), caspase 3 (H), CDK2 (I), VEGFR (J), p53 (K).

- ADMET predictions indicated favourable attributes and acceptable toxicity profiles for all compounds
- Quantum mechanical calculations and DFT models revealed modifications in HOMO-LUMO gaps (3.39–3.79 eV) and global reactivity indices.
- Molecular docking and MD simulations highlighted favourable binding against key cancer-related proteins
- These findings suggest that Roy and its derivatives are effective molecules with significant anticancer properties, supporting future experimental validation.

Acknowledgments

clusion

This work was financially supported by Fundação para a Ciência e a Tecnologia (FCT) through projects UIDP/04567/2020 and UIDB/04567/2020 and PhD grant SFRH/BD/137671/2018.

References

- [1] Bangay, G., Brauning, F. Z., et al., Rijo, P. 2024. Phytomedicine, 129, 155634.
- [2] Isca, V.M.S., et. al., Rijo, P., Kowalczyk, T. 2024. Molecules, 29, 1807.
- [3] Merecz-Sadowska, A., Isca, V.M.S., et. al., Rijo, P., Zajdel, R. 2024. Int. J. Mol. Sci., 25, 4529.