The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

Structural, Thermal, and Morphological Characterization of Biobased Wheat Straws as Sustainable Alternatives to Single-Use Plastics

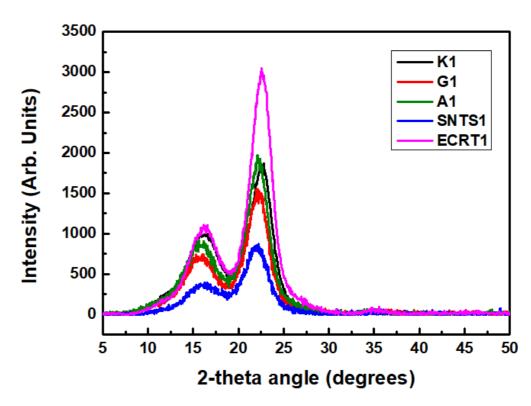
Evangelia Tarani^{1,2}, George Z. Papageorgiou², Konstantinos Chrissafis¹

¹School of Physics, Aristotle University of Thessaloniki, GR 54124, Greece

²Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece

INTRODUCTION & AIM

- Plastic pollution from single-use products such as drinking straws has prompted a global shift toward sustainable, biodegradable alternatives.
- This study explores the potential of wheatderived straws, produced from post-harvest
 agricultural residues in Central Macedonia,
 Greece, as eco-friendly substitutes for
 conventional plastic straws. Three wheat
 straw types (Staramaki K1, G1, and A1)
 were examined and compared with
 commercial straws made from reed,
 bamboo, paper, and bioplastics.

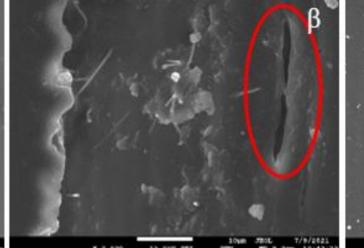

METHOD

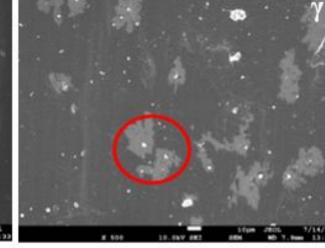
- > XRD: 2 cycle Rigaku Ultima+ diffractometer with Cukα radiation operating at 40 kV and 30 mA.
- > SEM: SEM-EDS: 20kV JEOL 840A SEM with an OXFORD INCA 300 EDS analyzer.
- > Oxidation resistance: Setaram SETSYS TG-DTA 16/18.
- Absorption (%): The samples were immersed for 30 min in drinking water, Coca-Cola, and fresh orange juice under identical temperature and liquid height.

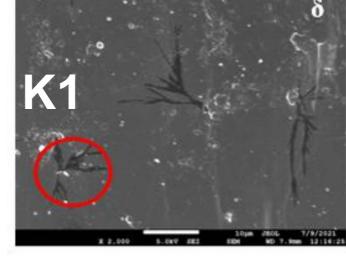
Table 1: Type of straws and raw materials

A/A	Raw material	characteristics	
K1	wheat	staramaki	
G1	wheat	staramaki	
A1	wheat	staramaki	
WS	wheat	wheat straws	
ECRT1	reed	reed straws	
BS	bamboo	bamboo straws	
PS	paper	bio paper straws	
BPS	bioplastic	biodegradable	

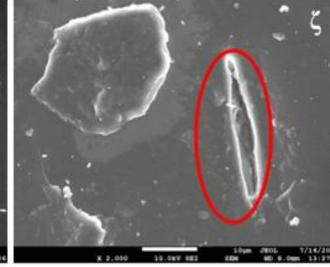
RESULTS & DISCUSSION

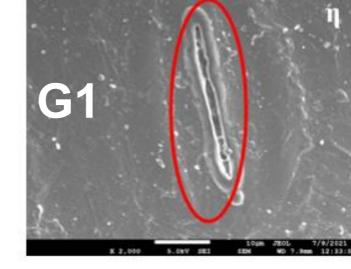

A/	Όνομα	Κρυσταλλικότ	R ²
Α		ητα (%)	
1	K1	77.1	0.99916
2	G1	70.3	0.99744
3	A1	72.6	0.99865
4	SNTS1	66.9	0.98919
5	ECRT1	73.7	0.99871
6	BMBS1	51.4	0.99227
7	MTPX1	68.9	0.99740
8	BDGR1	88.5	0.99631

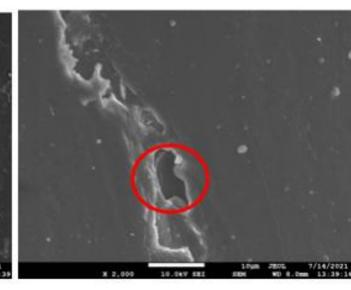

water

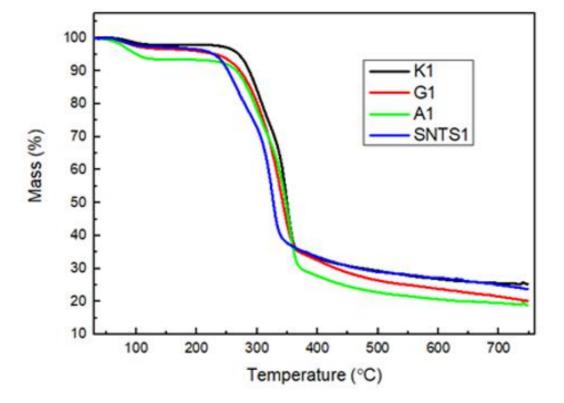

Orange juice

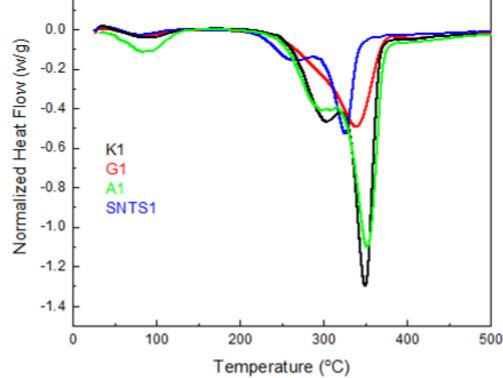
Coca cola











CONCLUSION

- > K1 showed the highest crystallinity (77.1%) and best structural order.
- > SEM: minimal surface damage after immersion.
- > TGA: highest thermal stability, suitable for hot beverages.