

REVALUATION OF AGRO-INDUSTRIAL WASTE THROUGH **BIOTECHNOLOGY: PAPAYA PEEL WASTE AS FEEDSTOCK** FOR PHB PRODUCTION BY NATIVE BACILLUS STRAINS

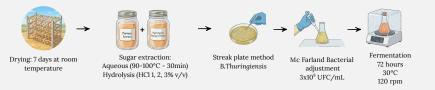
Julián R. González C¹, William F. Hidalgo B¹

¹Research Group on Organic Compounds of Medicinal Interest. Industrial University of Santander, 27th Avenue, 9th Street,, Bucaramanga, Colombia julian23988@gmail.com

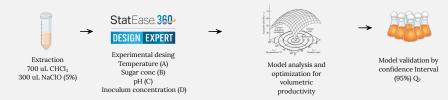
BACKGROUND

Conventional plastics pose a severe environmental crisis. Polyhydroxyalkanoates (PHAs) are fully biodegradable biopolyesters, offering a sustainable alternative.

However, high production costs, driven by expensive pure carbon substrates (e.g., glucose), currently limit their


Agro-industrial by-products are a low-cost, sustainable solution. Papaya peel is a major, nutrient-rich waste stream (rich in maltose and minerals) but remains an unexploited resource for PHA production. This study aims to valorize this waste using Bacillus thuringiensis (C01).

AIM


To optimize the production of Poly(3-hydroxybutyrate) [P(3HB)] from papaya peel extract as the sole carbon source using Bacillus thuringiensis (C01).

METODOLOGY

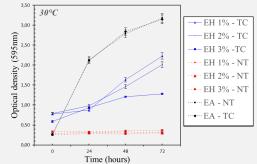
STAGE 1: SUBSTRATUM PREPARATION AND PREELMINAR FERMENTATION

STAGE 2-3: OPTIMIZATION AND VALIDATION

STAGE 4: CHARACTERIZATION

MALDI-TOF/TOF-MS

RESULTS

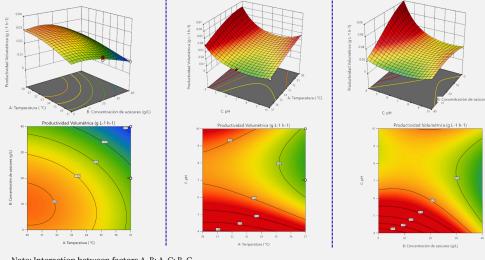

STAGE 1: SUBSTRATUM PREPARATION AND PREELMINAR FERMENTATION

Treatment	Reducing sugars (g/L)	Soluble proteins (g/L)	Phenolic compounds (ppm)			
EA	10.98 ± 0.16^a	0.759 ± 0.019^a	37.52 ± 1.44^d			
EH 1%	11.07 ± 0.11^{b}	0.683 ± 0.087^{ab}	$501.24\pm4.5b$			
EH 2%	11.55 ± 0.16^{c}	0.626 ± 0.100^{bc}	$520.07 \pm 7.45^{\circ}$			
EH 3%	12.08 ± 0.24^{c}	0.530 ± 0.15^c	$549.99 \pm 5.56^{\alpha}$			
Note: AE: Aqueous Extract; HE 1%: Hydrolyzed Extract HCl 1% (v/v); HE 2%: Hydrolyzed Extract HCl						

Parameter	Result		
Ash	8%		
Calcium	34035.63 mg/Kg		
Magnesium	5720.15 mg/Kg		
Sodium	1756.59 mg/Kg		
Potassium	40081.57 mg/Kg		

Note: Physicochemical analysis of papaya peel

Extract	Dry biomass (g/L) (<x>±IC 95%)</x>	PHA accumulation % p/p	PHA (g/L) (<x>±IC 95%)</x>	
EH 1% -TC	2.594±0.055	54.6%	1.416±0.095	
EH 2% -TC	2.292±0.157	42.0%	0.969±0.102	
EH 3% -TC	1.347±0.142	34.3%	0.462±0.083	
EH 1% - NT	0	0	0	
EH 2% - NT	0	0	0	
EH 3% - NT	0	0	0	
EA - NT	3.694±0.040	62.0%	2.290±0.171	
EA - TC	3.503±0.138	61.0%	2.231±0.014	


Note: AE: Aqueous Extract; HE 1%: Hydrolyzed Extract with 1% (v/v) sulfuric acid; HE 2%: Hydrolyzed Extract with 2% (v/v) sulfuric acid; HE 3%: Hydrolyzed Extract with 3%

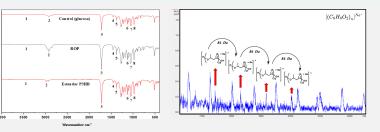
Aqueous extraction (AE) was selected as the ideal, non-inhibitory feedstock.

- Acid Hydrolysis (AH) generated severe microbial inhibitors, including >500 ppm of phenolic compounds and potential furfurals, which completely inhibited B. thuringiensis growth.
- Detoxification of AH with activated carbon was insufficient and failed to match the performance of simple AE.
- AE provided a nutrient-rich medium (sugars, minerals, proteins) that promoted robust bacterial growth.

STAGE 2-3: OPTIMIZATION AND VALIDATION

$$PHA(Y) = \{-1.60 - (0.1230 x \mathbf{A}) - (0.1334 x \mathbf{B}) - (0.1322 x \mathbf{C}) - (0.0190 x \mathbf{D})$$
$$- (0.0285 x \mathbf{AB}) - (0.0289 x \mathbf{AC}) + (0.0129 x \mathbf{AD}) + (0.1278 x \mathbf{BC})$$
$$- (0.0455 x \mathbf{BD}) + (0.0077 x \mathbf{CD}) - (0.0516 x \mathbf{A}^2) - (0.1058 x \mathbf{B}^2)$$
$$+ (0.2179 x \mathbf{C}^2) - (0.3708 x \mathbf{D}^2) \}$$

Note: Interaction between factors A-B; A-C; B-C


A Central Composite Design (CCD) successfully modeled the effects of Temperature (A), Substrate Concentration (B), pH (C), and

- The model was highly significant (p < 0.0001) with a strong coefficient of determination (R²-adjusted = 0.9958) (R²-predicted = 0.9902)
- Temperature, Substrate Concentration, and pH were identified as the most critical factors influencing Q_p Optimal conditions were validated at 31.4°C, 10.1 g/L substrate, pH 5.6 and 4% v/v (1x10⁷ UFC/mL) inoculum conc.

Essay	Dry biomass(g/L)	PHA accumulation (% p/p)	PHA (g/L)	Q _p g.L- 1h-1	3,00 (mu265)		2	į	1
ROP 1	3.38	81.2	2.75	0.038		• C2 • C3	<u>ā</u>		
ROP 2	3.31	80.7	2.67	0.037	density	03	/		er titt 🌡
ROP 3	3.23	80.54	2.61	0.036	5 1,50 −	/	- \$	Φ	¥
C 1	1.66	25.33	0.42	0.005	Optical 001	/ /			
C 2	1.46	26.33	0.39	0.005	opti 1,00				
C 3	1.54	25.66	0.4	0.005	0,50				
					0,00	•	. ,		
						0	2.4	48	72

Note: ROP: Aqueous extract test under optimal fermentation conditions; C: Control (glucose as carbon source) under optimal fermentation conditions

STAGE 4: CHARACTERIZATION

The optimized process (ROP) was validated against a pure glucose control (C), and the resulting polymer was characterized. Superior Performance: The papaya peel substrate (ROP) was 6.6 times more productive ($Q_p = 0.0371 \text{ g/L/h}$) than the glucose control ($Q_p = 0.0371 \text{ g/L/h}$) the glucos

- = 0.0056 g/L·h). High Accumulation: B. thuringiensis achieved a final PHA concentration of 2.67 g/L with an exceptionally high intracellular
- FTIR Identity: FTIR analysis confirmed the polymer's identity as P(3HB) via the characteristic ester carbonyl peak at 1720 cm⁻¹.
- MALDI-TOF-MS Confirmation: MALDI confirmed the polymer structure, showing a clear repeating monomer series of 86 Da (C₄H₆O₂). High Quality Polymer: The polymer was found to be nearly monodisperse, with an extremely low Polydispersity Index (PDI) of 1.0057,
- indicating highly uniform chains desirable for industrial applications.

- 1. Aqueous extraction (AE) of papaya peel is a simple, effective, and non-inhibitory method for creating a nutrientrich feedstock for B. thuringiensis.
- 2. Response Surface Methodology (RSM) was a powerful tool to optimize PHA production, maximizing volumetric
- 3. Papaya peel extract proved to be a vastly superior substrate to pure glucose, yielding 6.6x higher productivity.
- 4.B. thuringiensis (C01) successfully synthesized a high-quality, nearly monodisperse P(3HB) (PDI = 1.0057) from this agricultural waste, confirming the viability of papaya peel as a low-cost feedstock for a circular bioeconomy.

References