MobyGlobal: Real-Time Right Whale Detection Network Powered by a Two-Branch
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North Atlantic Right Whales are
critically endangered. Around 370
Right Whales remain, with only 70
fertile females (Szabo, 2018).
Additionally, scientists estimate
that one-third of right whale
deaths are unrecorded (NOAA,
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Human interactions are the
leading cause of Right Whale
deaths and injuries (Gannon, 2012;
NOAA, 2025; Figure 1). The primary
causes are fishing net
entanglements and vessel
collisions (Figure 2).

These two interactions are
preventable when whale locations

are known because net placements

and ship routes can be modified to
prevent encounters.

Location information about whales is currently limited (NOAA,
2025). Whale tracking is mainly done through whale tagging and
aerial scanning. Whale tagging is an invasive procedure that causes
blunt trauma (Weller et al., 2008; Figure 3) and requires expensive
monitoring equipment - $2400 per whale (IFAW, n.d.). Because
Right Whales are solitary, tag monitoring can only track one whale
at a time. Aerial imagery provides a historical location and doesn’t
provide the ability to continuously track locations (Figure 4); This
results in temporal gaps in available whale location data (Marine
Mammal Commission, 2024). Additionally, vast regions of the ocean

are unmonitored.
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Figure 1. North Atlantic Right-Whale death
and injuries 2017-2025 due to human
activities in Unusual Mortality Event
(modified from NOAA, 2025)

Figure 2. A) Whale Ship Collision Result
(Kurmelovs, 2022) & B) Whale Net
Entanglement (IFAW, 2022)

Current Solutions for Whale Tracking are Insufficient:
Tagging and Aerial Scanning.
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Figure 3. Whale Tagging Causes
Trauma and Damage (IFAW, n.d.)

Whales and other cetaceans are known to have distinct calls that
can be differentiated from ocean noise (Figure 5; NOAA, n.d.).
Additionally, whale calls can travel thousands of miles (Matthews,
2021). Therefore, a tracking system on whale calls can provide an

Figure 4. Aerial scans aren’t able to
track continuously or in real-time.
(Image from Bessel, 2023)

inexpensive and continuous solution whilst being unobtrusive.

Humpback

Frequency (Hz)

Ship noise
s North Atlantic right whale upcalls

Time (m:ss)

whale song

Sei whale downsweep doublet

\ \. \

. - ]
-

410 420 425 PR 435 440 445 450 455 50

T
415

Figure 5. Spectrogram demonstrating easily distinguishable common
aquatic sounds (modified from NOAA, n.d.)
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Ensemble Learning Model on SD-Printed Buoys
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WHALE AUDIO CLASSIFICATION
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Figure 6. The data was pre-processed into features using 11
extraction methods, resulting in seven 1D features & four 2D features
(bottom images) shown above (Image created by researchers)
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Figure 7. Data was augmented using Gaussian Blurring and Time
Dilation to intfroduce ocean noise (Image created By researchers)

Data Preprocessing
e The audio dataset was from Cornell

Marine Mammal

Database, and NOAA (Cukiersk, 2013). It

of labeled Right

Whale and ambient ocean audio.

e The data was pre-processed by extracting 7
types of 1D harmonic features and 4 types
of 2D spectral features (Figure 6).

o Spectral features describe the shape

and distribution of frequencies.
Harmonic features relate to pitch,

harmony, and tone.

e Gaussian blurring and time dilation were
used to augment the dataset and allow the
model to differentiate in different
conditions (Figure 7). Data was split into

training (70%), validatio

n (15%), and testing

(15%) sets using K-Fold cross validation.
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Figure 8. A two-branch ensemble learning model (Moby) was made to classify whale audio. The 2D-branch uses 2D convolutions

in a Convolutional Block Attention Module. The 1D-branch combines 1D convolutions and Long Short Term Memory modules.
These features are combined into a neural network to create a softmax prediction. (Image created by researchers)

Training/Testing

e Atwo-branch ensemble
model (Moby) was trained for
whale audio classification
using a Convolutional Block
Attention Module for 2D data
and an LSTM feature branch
for 1D data (Figure 8).

e Performance in AUROC score
and accuracy was compared
to traditional CNN-based
models (families of Resnet,
VGG, and EfficientNet; shown
in Figure 9).

e Results show a higher AUROC
score with fewer parameters
when compared to
conventional models for
audio classification.
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Figure 9. A comparison of model performance (AUROC score) vs parameter
count when classifying Right Whale sounds. Moby showed a lower parameter
count (343,877) with a higher AUROC score (0.977 £ 0.002) than pre-trained

conventional CNN image recognition models (Image created by researchers).

MOBYGLOBAL NETWORK & API

A buoy uses LTE data

audio clips to a server
API.

The buoy also sends
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information.
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Figure 10. Data flow between buoy (left), server (middle), and client (right). (Figure Created by researchers, Icons from Flaticon)

The server pipeline uses a
processing buoy updates (
app using the MobyGlobal
for testing using vanilla JS

Apache benchmark was us

requests to the server for testing. Results

show an average response
between client and server

yielding an average of 486
update.

server’s processing time was also tested,
ms per buoy Figure 11. Screenshots of a webapp built with HTML/CSS/JS

REST API for
Figure 10). A client
APl was created
(Figure 11).
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time of 26 ms
(Figure 12). The

created to test the capabilities of the MobyGlobal API.
(Website and screenshots were created by researchers)

BUOY DESIGN & TESTING
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Figure 12. A histogram of server-client response times with Apache
benchmark. Server response time distribution on average is 26 ms,
with a skewed right distribution. (Image created by researchers)
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can function for 72 hours.
design costs $442 to build

from T3chFlicks (sk-t3ch, 2021) was
evaluated for stress factors under ocean
conditions using a Von-Mises stress test
(Figure 14A). The buoy was then 3-D
printed, and onboard electronics were
added and enclosed with the final
assembly (Figure 13). The buoy was tested
for buoyancy and stability inside an

sunlight. Without sunlight, the electronics
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Figure 14. Results of a Von-Mises Stress Test on the buoy tested in SimScale.
Accounted for gravity, water pressure, wave forces, drag, etc. Used literature to
powered in predict the max tough conditions for PETG (50 MPa) for both fluid & static

forces. The maximum stress of ~0.008 MPa (highlighted in red) was below the 50
MPa limit of PETG, confirming a strong design. A field trial was then conducted

The overall on the buoy, demonstrating buoyancy and stability in a pool test. The buoy was
(Table 1). found to be self-righting when disturbed. (A - Graphic created by researchers in

SimScale; B - Photograph taken by researchers)

Figure 13. After 3D printing, the buoy was sealed with epoxy resin to ensure waterproofing. Onboard electronics consist of an M5Stick-style ESP32, which in full deployment will
interface with an LTE modem and a hydrophone; during benchmark tests, Wi-Fi and a standard microphone were used instead. All components—the ESP32, battery, and solar panels—
are wired on a breadboard mounted to the buoy’s lid and powered via USB from a dual-battery pack. (

Product Cost
5v 60mAh Solar Panels $15.00
PETG Filament $20.20
Epoxy Resin $66.66
M5 Stick / ESP32 $20.00
Aquarian A5 Hydrophone $200.00
Cables & Wires $5.00
UPhoria UM2 Sound Card $40.00
2x 10k mAh batteries $35.00
LTE Module $40.00
Total $441.86
Wireless data cost (yearly) | $420.00

Table 1. The buoy’s estimated cost
breakdowns, with the total module costing
around $440. A hydrophone and a sound card
were not purchased in the current prototype,
but are needed for deployment. (Table
created by researchers)

DISCUSSION

WHALE AUDIO CLASSIFICATION

Moby’s high AUROC score (0.98) passes the benchmark (0.72)
set by Cornell (Scipy, 2013). Moby is the most efficient model
as it uses far fewer parameters than conventional CNN models
while being more accurate.

MOBYGLOBAL NETWORK & API

Testing of the server shows that the system is working in real
time with a processing time of less than 0.5 seconds.

BUOY DESIGN & TESTING

The Von-Mises Stress Test shows sufficient theoretical
durability, with pressure well below the maximum pressure of
PETG Filament. In physical testing, the buoy proved buoyant,
watertight, and resistant to external perturbation forces. The
buoy is potentially self-sufficient with the solar panels, as the
batteries allow up to 3 days of recording and updates without

sunlight.
SOLUTION ADJUSTMENTS

e The initial processing occurred on the buoy, unable to keep
up with the incoming stream of data. Thus, audio processing
via Moby was transferred to the server-side.

e The buoy’s processor was changed from a Raspberry Pi to an
ESP32 due to lower power costs for the ESP platform.

e Moby (detection model) was changed from a pure CNN to a
CBAM model to increase detection accuracy.

FUTURE DEPLOYMENT

BUOY DEPLOYMENT REQUIREMENTS

e The buoys’ sites should minimize environmental impact on
marine habitats (Viola, 2025).

e The US Coast Guard (USCG) needs to approve the buoy to be
deployed in US waters.

e A suitable anchor system needs to be developed for stability.

e Once deployed, the USCG should be informed of the location of
the buoys to publish on maps.

DEPLOYMENT PLAN
e To be deployedina
network of ~133
buoys, each occupying
a radius of 13 nautical
miles (Figure 15).
e Request the USCG to
publish on buoy maps.
e Use an anchor system
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CONCLUSION

ADDRESSING CRITERIA

1. A strong classification, 0.98 AUROC Score

" demonstrates high proficiency when
compared to traditional CNNs

(lcons from Flaticon)

Extremely replicable, each buoy took <46
hours to print and assemble, and costs much
less when compared to current market buoys

MobyGlobal’s performance is real-time, with
minimal processing delay measured and low

APPLICATIONS

e The target application for this architecture is to prevent whale
injury and deaths through the early detection of whale-dense
areas. The aim is to reduce collision-related deaths and fishing
net entanglement by rerouting ships or informing people of
whale-dense areas.

e An extension is the use of our database, MobyGlobal, to
contribute to the development of marine data for any marine
mammal with a distinct sound. This can be used to strengthen
conservation efforts by providing critical data.
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