The 1st International Online Conference on Gels

MDPI

03-05 December 2025 | Online

The Creation of A Docetaxel-Loaded Hydrogel Nanosponge for the Treatment of Malignant Melanoma

Pritam Kayal, Hirakjyoti Das

Affiliation: Bharat Pharmaceutical Technology, Agartala, Tripura, India.

INTRODUCTION & AIM

Clinical Challenge

- ✓ Metastatic melanoma: Stage 4 cancer with poor prognosis
- ✓ Docetaxel (BCS Class IV): Poor aqueous solubility difficult formulation
- ✓ Severe dose-dependent side effects limit therapeutic efficacy
- ✓ Melanoma accounts for 80% of skin cancer deaths globally

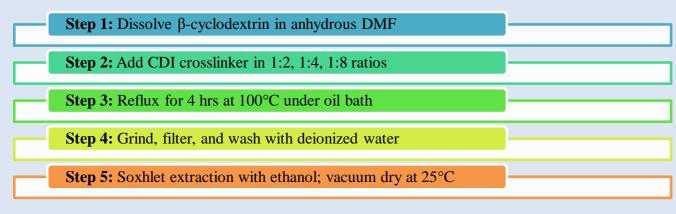
Proposed Solution

- ✓ Nanosponges
- ✓ Hypercrosslinked polymer-based nanoparticles with tunable cavities for drug encapsulation

Hydrogel Vehicle

✓ Sustained-release topical delivery system for localized tumor targeting

Nanosponge Key Properties

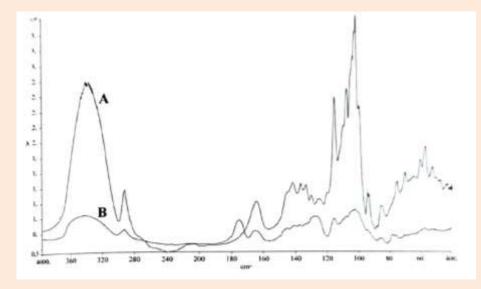

- o Porous 3D structure: 1-100 nm size with nanosized cavities
- o Thermal stability: Stable up to 300°C; pH 1-11 stability
- o Biodegradable, non-toxic, non-irritating formulation
- o Extended release: Up to 12+ hours continuous action

MATERIALS & METHOD

Materials & Methods

- ✓ Drug: Docetaxel (CSC Pharmaceuticals)
- ✓ Polymer: β-Cyclodextrin (Sigma Aldrich)
- ✓ Crosslinker: 1,1-Carbonyldiimidazole (CDI)
- ✓ Method: Crosslinking reaction at 100°C for 4 hrs in DMF

Nanosponge Synthesis Procedure

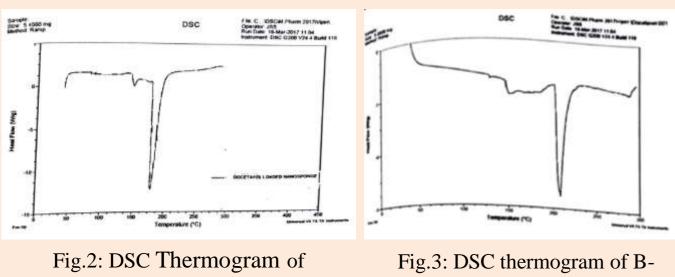

RESULTS & DISCUSSION

Preformulation Findings: Solubility Studies: Table 1: Solubility analysis of Docetaxel

Solvent	Solubility	Solubility value(mg/ml)
Water	Poorly soluble	*
Ethanol	Soluble	1.14
Acetonitrile	Freely Soluble	2.57
DMSO	Highly soluble	4.71

cyclodextrin nanosponge

Preformulation Findings: Compatibility (FTIR)



β-Cyclodextrin	β-Cyclodextrin nanosponge
2928.53 cm ⁻¹	2919.36cm
3370.72 cm ⁻¹	3423.76 cm
1157.84 cm ⁻¹	1035.41cm
1705.27 cm ⁻¹	1723.68 cm
	2928.53 cm ⁻¹ 3370.72 cm ⁻¹ 1157.84 cm ⁻¹

Fig.1: FT-IR studies showing functional group, B-Cyclodextrin and final formulation with Wave numbers

Docetaxel

Table 2: Showing functional group, B-Cyclodextrin and final formulation with Wave

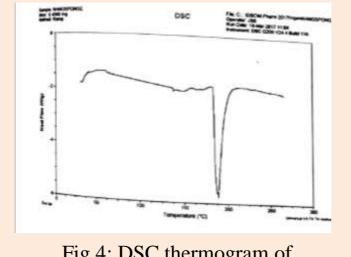
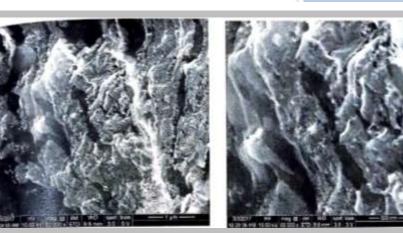



Fig.4: DSC thermogram of Docetaxel-loaded nanosponge

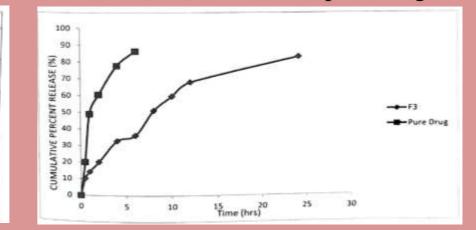
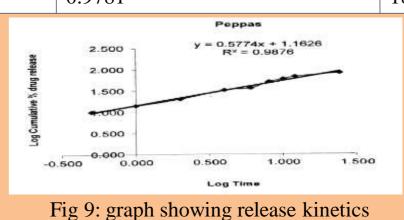
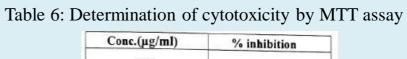

Scanning electron microscopy (SEM):

Fig.17 scanning electron mierograph of Docetaxel loaded nanosponge



	97889	% Cumulative Drug Releas		% Cumulative Drug Release	e Drug Release
S.No	Time (hrs)	F3	Pure Drug		
1	0	0	0		
2	0.5	10.2±0.05	20.11±0.06		
3	1	14.22±0.09	49±0.14		
4	2	20.18±0.1	60.62±0.2		
5	4	32.92±0.1	77.81±0.1		
6	6	36.32±0.05	86.37±0.05		
7	8	51.22±0.1			
8	10	59.62±0.1			
9	12	67.92±0.1			
10	24	82 84 0 02			

Table 4: Regression value for various kinetic models


Kinetic Model	R ² Value	Slope (n)
Zero Order	0.8751	3.468
Peppas Model	0.9877	0.584
Higuchi	0.9781	18.329

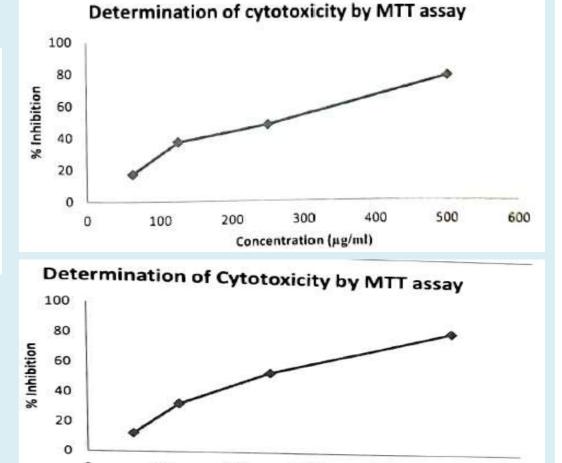

MTT Cytotoxicity Assay (Vero Cells)

Table 5: Determination of cytotoxicity by MTT assay

conc. (µg/ml)	% inhibition
500	82.92
250	54.25
125	32.54
62.5	12.25
IC ₅₀	242.5 μg/ml

Conc.(µg/ml)	% inhibition
500	78.92
250	48.25
125	37.56
62.5	17.45
IC50	275 μg/ml

Concentration (µg/ml)

CONCLUSION

- \checkmark β-Cyclodextrin nanosponges successfully developed and optimized
- ✓ F3 formulation (1:8 ratio): 195 nm particles, 86% EE, 51.6% LC
- ✓ Sustained 24-hr drug release with non-Fickian diffusion mechanism
- ✓ Formulation safer & more efficacious than pure docetaxel

FUTURE WORK / REFERENCES

Five key research directions including in vivo pharmacokinetic studies, surface modification with targeting ligands, biodistribution tracking, combination therapy evaluation, and stability studies.

1.Rajpurohit D, Kakkar S, Sharma A, Kumar V. Cyclodextrin-based nanosponges for drug delivery: Formulation, characterization and therapeutic applications. Pharmaceutics. 2020;12(10):922. https://doi.org/10.3390/pharmaceutics12100922

2.Khunt D, Misra M, Shah S, Kacha M. Development and characterization of nanosponge-based hydrogel for topical delivery of terbinafine HCl. Pharmaceuticals. 2017;10(4):87. https://doi.org/10.3390/ph10040087
3.Quaglia F, Ostacolo C, Di Gaetano S, Nese G, Busetto R, De Rosa G. Delivery systems for poorly soluble drugs: cyclodextrins and nanosponges. Expert Opin Drug Deliv. 2018;15(12):1195-1205. https://doi.org/10.1080/17425247.2018.1533890