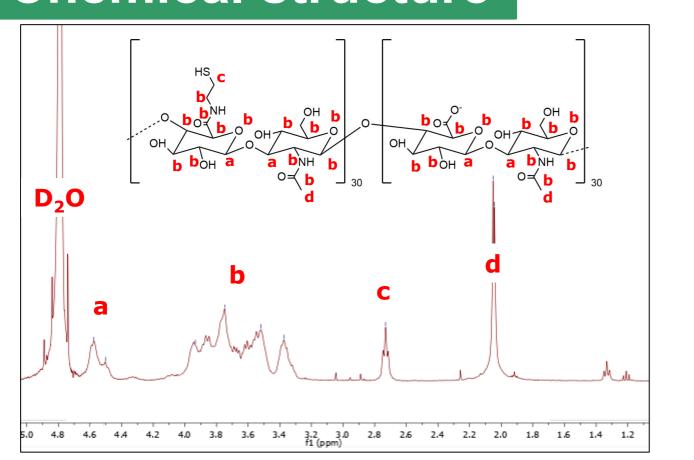
03-05 December 2025 | Online

Hyaluronic acid-based hydrogels for suprachoroidal administration in glaucoma treatment: influence of precursors characteristics on hydrogels properties

Inês A. Pereira, Ana C. Fonseca and João P. Vareda

University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Chemical Engineering, Rua Sílvio Lima- Pólo II, Coimbra, 3030-790, Portugal


Introduction

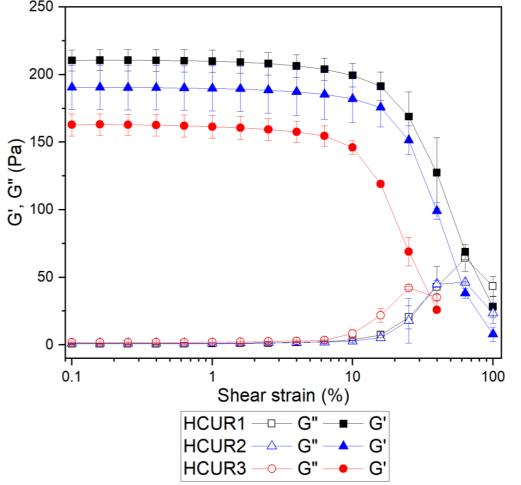
- Glaucoma is a leading cause of vision loss that is associated with the increase in intraocular pressure.
- The injection of a hydrogel into the suprachoroidal space (SCS) is a promising treatment, decreasing intraocular pressure and allowing drug delivery.
- Hydrogels of hyaluronic acid crosslinked with PEG were prepared and studied as potential drug delivery vehicles.

Synthesis Scheme 1. Synthesis of thiolated hyaluronic acid via a two-step process. PEG crosslinker + curcumin

Scheme 2. Synthesis of HA-based hydrogels.

Chemical structure

Figure 1. 400MHz ¹H NMR spectra of representative HA-SH.


- HA modification is successful
- Different modification degrees were achieved

Rheology

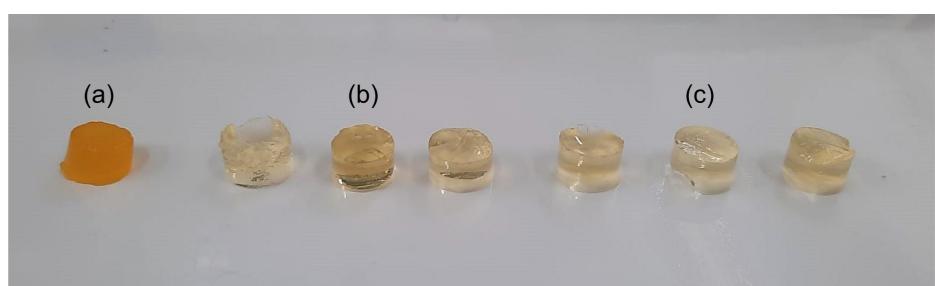
 Table 1. Storage modulus and critical strain.

	Crosslinker	G' (Pa)	Critical Strain (%)
	MW		
HCUR1	575	210	65
HCUR2	302	190	60
HCUR3	214	160	35

- HA with a modification degree of 26% yields gels with the best properties
- The sturdiness of the hydrogel depends on the crosslinkers MW
 - Higher MW crosslinker creates a more robust gel

Figure 2. Amplitude sweep for the curcumin loaded hydrogels.

Gel Time


Table 1. Gel time for hydrogels with and without curcumin, for different PEG crosslinkers.

		No curcumin	curcumin
n _{SH} :n _{acrilate}	Crosslinker <i>MW</i>	t _{gel} (min)	t _{gel} (min)
5,00	575	1,83	2,33
3,00	302	2,75	3,08
4,00	214	2,42	2,58

- Curcumin addition increases gel time
- Steric hindrance effects due to curcumin are more evident in formulations with Low MW crosslinkers
- Fast gelling times were obtained for all formulations

In vitro curcumin release

- Curcumin release was assessed in vitro using PBS (1X concentration)
- Sink conditions require large volume of media due to low curcumin solubility

Figure 3. Aspect of hydrogels after synthesis (a) and after 1 month in PBS: HCUR1 (b) and HCUR3 (c).

- Curcumin is released but was not quantifiable due to high dilution in release medium;
 - Future work requires the testing of more suitable release media.