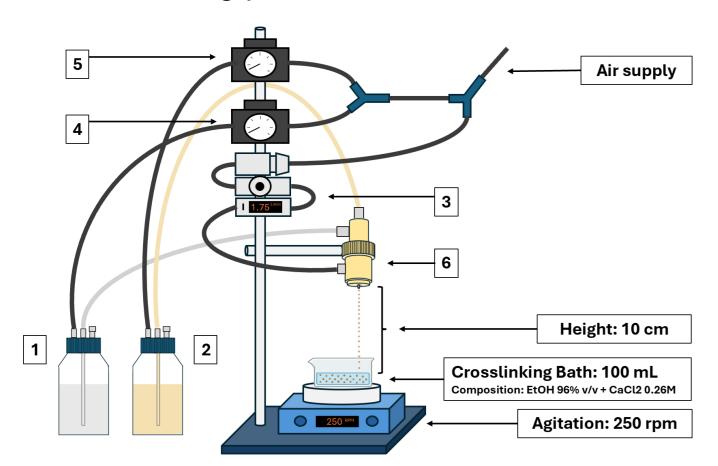
The 1st International Online Conference on Gels

03-05 December 2025 | Online

Design of core-shell aerogel particles combining Al tools and supercritical drying for oral drug delivery

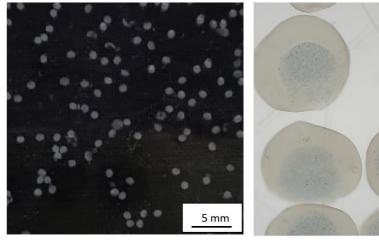
Carlos Illanes-Bordomás*, Mariana Landin, Carlos A. García-González

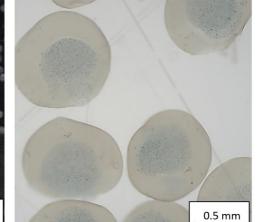
AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, E-15782-Santiago de Compostela, Spain

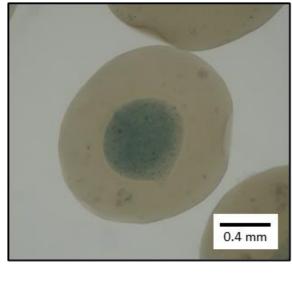

Corresponding author*: carlosjavier.illanes@rai.usc.es

INTRODUCTION & AIM

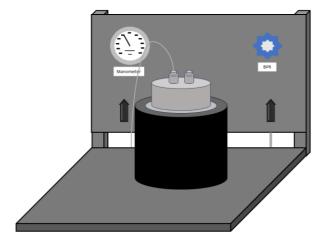
Bioaerogels have been postulated as drug delivery systems, and can be synthesized via sol-gel processes using a wide variety of polysaccharides [1]. Core-shell aerogels can be prepared by combination of air-assisted coaxial dripping systems with subsequent supercritical drying [2]. This methodology involves numerous processing parameters, making Artificial Intelligence (AI) tools invaluable for optimizing and understanding the effect of each variable on the particle characteristics [2]. In this work, AI tools were employed to develop aerogel particles using alginate (Alg) solutions as drugloaded cores and konjac glucomannan (KGM) solutions as coatings.


METHOD


Processing parameters selected to model the formulation method:


- 1. [KGM] = 0.6 0.7%w/v
- 2. [Alg] = 0.75 1.25%w/v
- 3. Airflow = 1.75 2.65L/min
- 4. Pressure (KGM) = 0.4- 1.2 bar
- 5. Pressure (Alg) = 0.2 -1.0 bar
- 6. Nozzle configuration = 0.8/0.35, 0.5/0.15, 0.8/0.15 mm

Selected example of an evaluated formulation to obtain explicative models and optimal formulations:



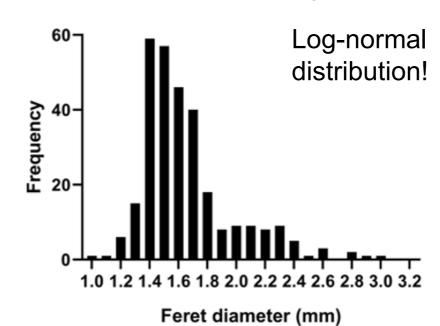
- Feret diameter (mm)
- Circularity (Values: 0-1)
- Coating thickness (mm)
- Core position (score) Nozzle blockage (score)
- Core volume (mm³) 6.

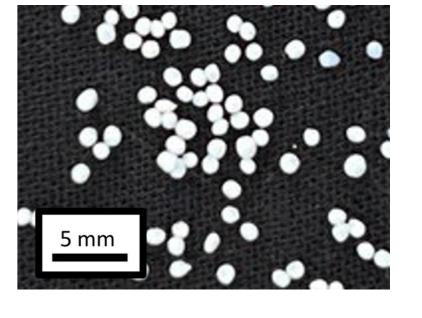
Supercritical drying conditions:

Pressure: 120 bar Temperature: 40°C Time: 5 h (4 h dynamic + 1 h static)

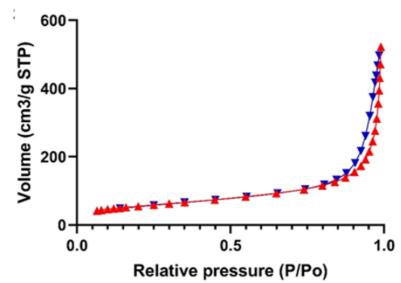
ACKNOWLEDGMENTS

This work was funded by MICIU [PID2023-151340OB-I00/AEI/10.13039/501100011033], Xunta de Galicia [ED431C 2024/009], Agencia Estatal de Investigación [AEI], project IBEROS+ (0072_IBEROS_MAIS_1_E, Interreg-POCTEP 2021-2027), and FEDER funds. C.I.-B. acknowledges MCINN and FSE+ for an FPI fellowship [PRE2021097177/AEI/10.13039/ 501100011033].

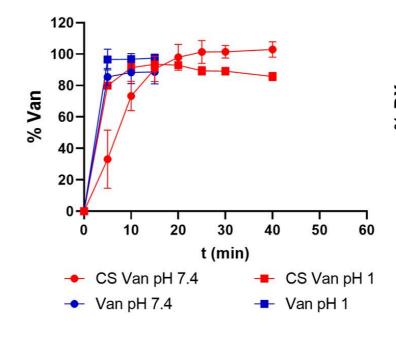


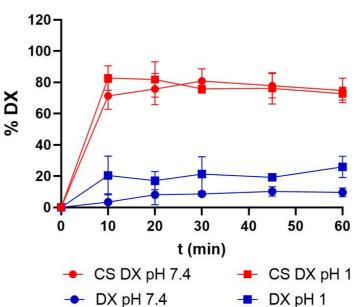

RESULTS & DISCUSSION

Morphological and textural properties of final aerogel formulations


D _{Feret} (mm)	Geometric deviation	Circularity	A _{BET} (m ² /g)	V _p (cm³/g)	D _p (nm)	ρ _{skel} (g/cm³)
1.77	1.21	0.83	201 ± 10	0.78 ± 0.04	15.4 ± 0.8	1.71 ± 0.01

Size distribution and picture of the core—shell aerogel formulation




Isotherm and mesopore size distribution of core—shell aerogels

Drug loading (DL %), Entrapment Yield (EY %) and drug release of Vancomycin (Van) and Dexamethasone (DX) from core-shell aerogels

	DL (%)	EY (%)
Aeroge (van)		17.3 (3.3)
Aeroge (DX)	els 0.032 (0.001)	0.182 (0.003)

CONCLUSIONS

- It was possible to produce core—shell gel particles based on alginate and konjac glucomannan in a one-step process.
- Al enabled the optimization of the core—shell particle production process.
- Core—shell aerogels loaded with lipophilic drugs facilitated instantaneous drug release.
- The obtained formulations were unable to modulate the release of hydrophilic drugs.

REFERENCES

F. De Cicco, P. Russo, E. Reverchon, C.A. García-González, R.P. Aquino and P. Del Gaudio. Carbohydrate Polymers, 147, 482-489 (2016).

C. Illanes-Bordomas, M. Landin and C.A. García-González, Polymers, 17, 1919 (2025). [2]

