


#### EXPLORING HEAT RESILIENCE IN COTTON THROUGH INTEGRATED MORPHO-PHYSIOLOGICAL AND BIOCHEMICAL ANALYSIS








#### BACKGROUND: HEAT STRESS IN COTTON

Cotton production faces mounting risk from rising temperatures due to climate change.

Heat stress during reproductive stages reduces: Floral development, Boll retention Fiber elongation



Global yield and fiber quality are declining under extreme temperatures.



#### EXPERIMENTAL DESIGN



Field experiment at CRS Faisalabad under natural thermal stress.

Evaluated multiple upland cotton genotypes.





Two environmental regimes:



Optimal temperature Heat-stressed (elevated) conditions





Optimal Temp High Temp



#### MORPHOGIGAL & PHYSIOFGICAL TRAITS



Significant genotypic variation observed in: Boll retention, Number of bolls per plant, Seed cotton yield Plant height



Heat stress reduced: Photosystem II efficiency (Fv/Fm) Relative water content (RWC) Cell membrane thermostability



Tolerant genotypes maintained: High chlorophyll stability, Strong photosynthetic rate Greater overall vigor

# PHYSOGICAL DRIVERS OF HEAT TOLERANCE



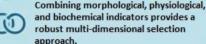
Key physiological determinants of heat tolerance include: Sustained photosynthetic efficiency Stable chlorophyll under stress Enhanced water retention mechanisms Balanced leaf temperature and transpiration Balanced Cell membrane thermostability

Core interpretation:

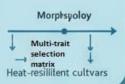
Genotypes maintaining PSII protection + water balance +Cell membrane thermostability show superior thermotolerance.

### **FUTURE BIOCHEMIICAL ANALYSIS**




Future biochemical assays will include: Antioxidant enzymes (SOD, CAT, POD) Osmolytes (proline, glycine betaine) **ROS-scavenging efficiency** 




Validate physiological basis of heat tolerance and improve accuracy of screening heatresilient cotton genotypes.



## INTEGRATED SCREENING FRAMEWORK



Fnables reliable identification of heatresilient genotypes suitable for climatestressed cotton-growing regions.

