The 6th International Electronic Conference on Applied Sciences

09-11 December 2025 | Online

A Comparative Analysis of Structural, Morphological and Optical Features of α-MnO₂/SnO₂ and β-MnO₂/SnO₂ Composites

Shriya Tripathia*, Narendra Kumar Pandeya Department of Physics, University of Lucknow, Lucknow-226007, U.P. India Email id: shriya97tripathi@gmail.com

size

(nm)

Crystallini 94.75

INTRODUCTION & AIM

- Due to rapid industrial growth and ongoing socio-economic activities, our atmosphere has become polluted.
- Maintaining clean air is essential for sustaining human life.
- Nanoparticles have shown great potential in the field of gas sensing as compared to the bulk materials [1].
- Hetero-nanocomposite exhibit superior gas-sensing characteristics [2].
- This study focuses on synthesizing α -MnO₂ and β -MnO₂ based heterostructures combined with SnO₂.
- Thin films produced from these hetero-nanocomposite powders show promise for use as efficient gas-sensing devices.

METHOD KMnO₄ solution **Dropwise addition of NaOH solution** Mn(NO₃)₂ solution The precipitate was filtered and washed Vigorously stirred for several hours α -MnO₂ Furnace **Dried and annealed** 1M KMnO₄ 1.5M Mn(NO₃)₂ solution solution **Mixture transferred** to autoclave KMnO₄+Mn(NO₃)₂ mixture Temperature controlled vigorous stirring **Stirred for 1hour** Filtered and grinded 11 washed β-MnO₂ **Dried** in oven at 80 °C for 4 hours

The α -MnO₂ and β -MnO₂ were mechanically mixed with SnO₂ in 1:1 ratio by weight using the agate mortar and pestle. Following which the mixtures were annealed at 400 °C to obtain the nanocomposites

Kept in oven for

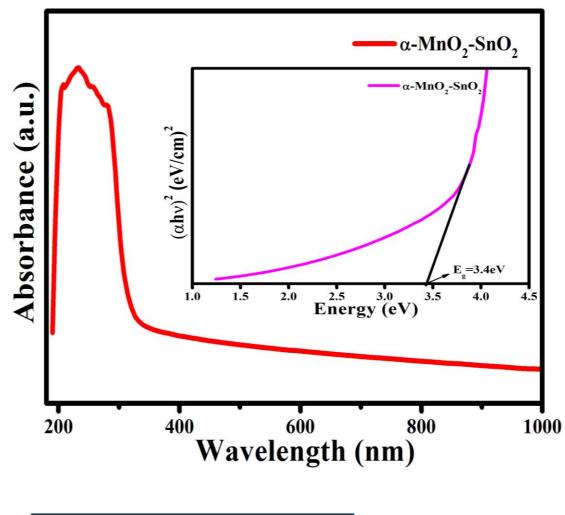
24 hours at

120°C

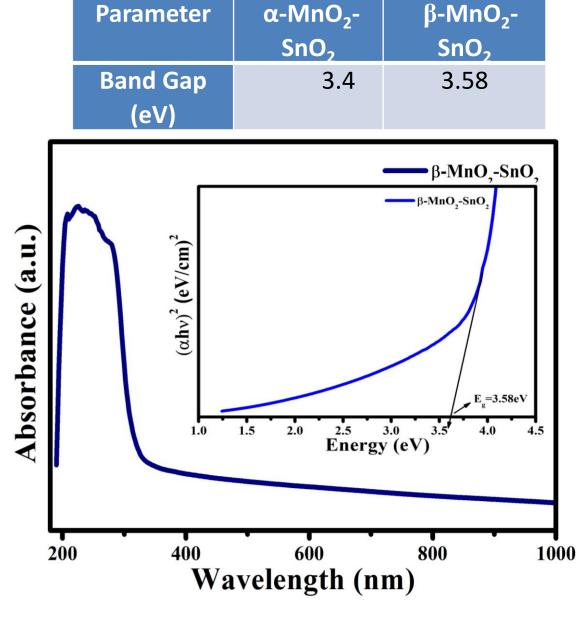
Annealed in furnace at

400 °C for 5 hours

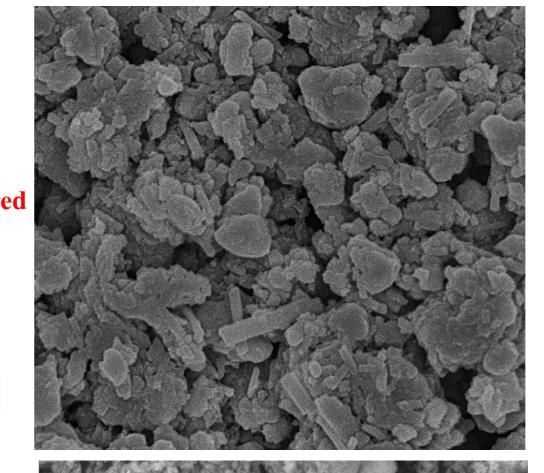
CONCLUSION

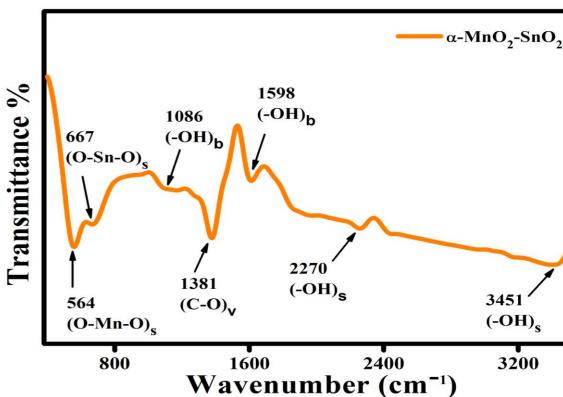

- The nanocomposites manifests high crystallinity and small crystallite size.
- Smaller energy band gap of the composites enables enhanced conductivity.
- SEM analysis reveals nanorods of α -MnO₂ and nano-threads of β -MnO₂ mixed with granules of SnO₂.

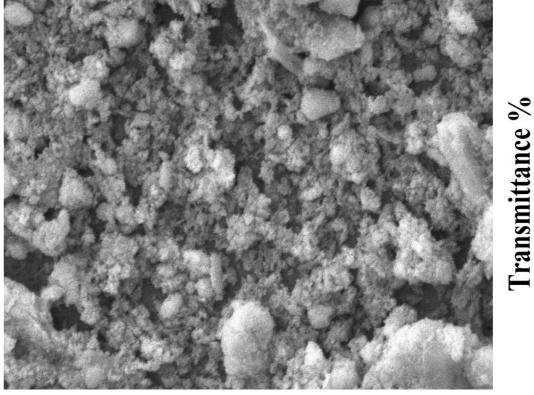
XRD Analysis • SnO Parameter MnO₂-MnO₂-SnO₂ SnO₂ Crystallite 22.58 D 19.33

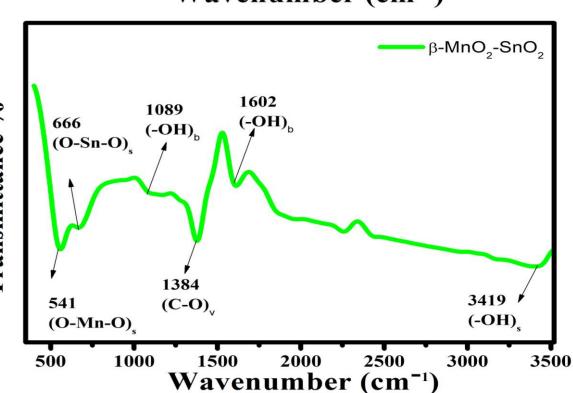

2θ (degree)

RESULTS & DISCUSSION


UV-Visible Analysis


88.18




SEM Analysis

FT-IR Analysis

FUTURE WORK / REFERENCES

[1] Structural and Optical Properties of α-MnO2 Nanowires and β-MnO2 Nanorods N. Rajamanickam et al. Solid-State Physics AIP Conf. Proc. 1591, 267-269 (2014); doi: 10.1063/1.4872568

[2] MnO2-SnO2 Based Liquefied Petroleum Gas Sensing Device for Lowest Explosion Limit Gas Concentration Ajeet Singh et al. ECS Sensors Plus, 2022, 1 025201, doi: 10.1149/2754-2726/ac8437