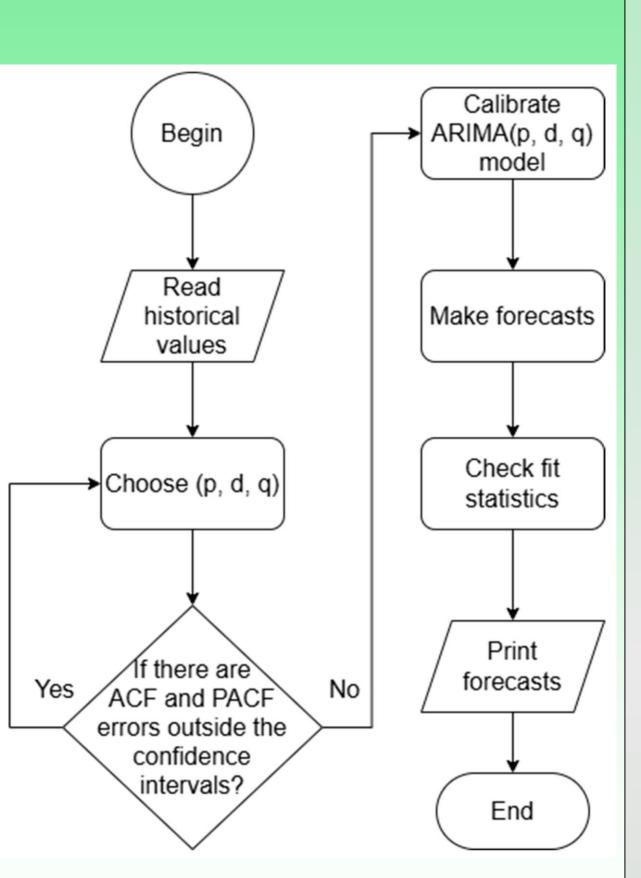


The 6th International Electronic Conference on Applied Sciences, 9–11 December 2025

Forecasting Solar Energy Production through Modeling of Photovoltaic System Data for Sustainable Energy Planning

Fatima Sapundzhi¹, Ivan Georgiev^{2,3}, Slavi Georgiev^{2,3}, Elitsa Chorbadzhiyska⁴, Pavel Chorbadzhiyski⁴, Venelin Todorov⁵,

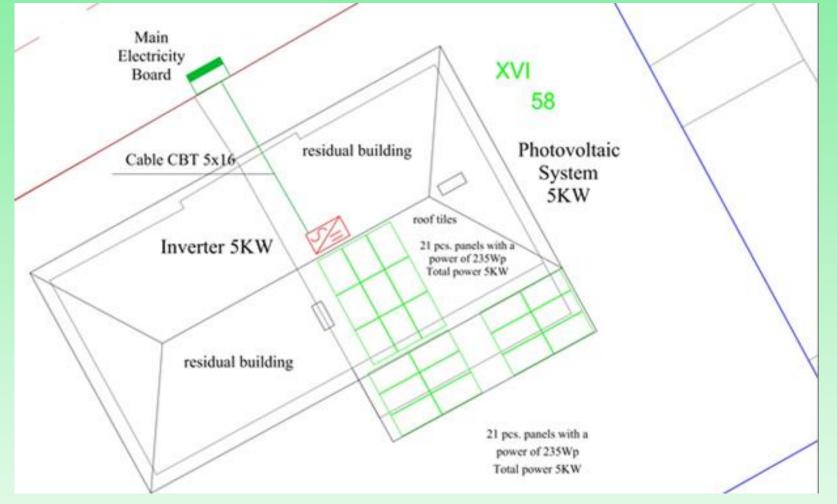
¹Department of Communication and Computer Engineering, Faculty of Engineering, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria ²Department of Information Modeling, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; ³Department of Applied Mathematics and Statistics, University of Ruse, 8 Studentska Str., 7004 Ruse, Bulgaria; ⁴Department of Chemistry, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria

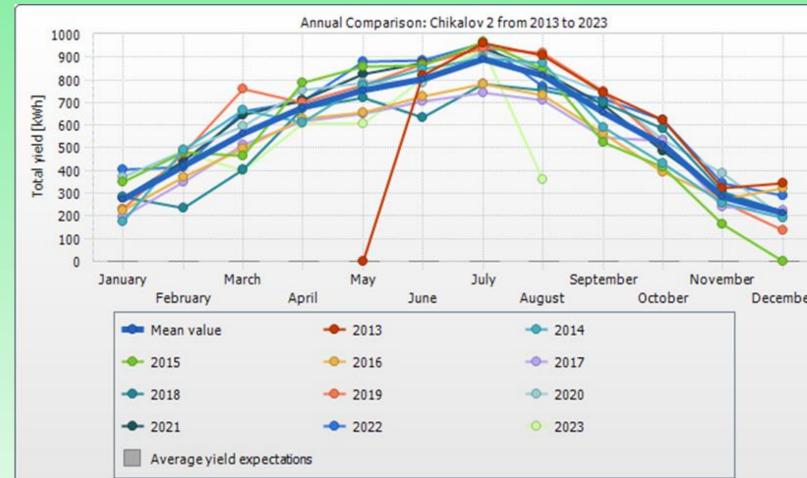

⁵Department of Parallel Algorithms and Machine Learning with Neurotechnology Laboratory, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria

Introduction

The use of photovoltaic energy is critical for supporting the transition to sustainable energy systems and for reducing dependence on fossil fuels. This study provides an analysis and forecast of the monthly electricity production of four 30kW photovoltaic (PV) power plants located in the Southwestern region of Bulgaria. We used five years of data to consider seasonal variations in solar energy production typical of temperate climates, as well as peak summer production and significant declines in winter.

The prediction was carried out using ARIMA algorithms, which are based on time series models. Analysis of the residuals involves applying different statistical approaches such as autocorrelation (ACF) and partial autocorrelation (PACF) for the determination of a suitable model. The reliability of the models was confirmed by calculating confidence intervals and by applying standard precision metrics, which provides a basis for reliable forecasting of future electricity production.


The study demonstrates that ARIMA models can successfully capture seasonal dynamics and long-term trends in photovoltaic production. Building forecasting models provides valuable information for decision-makers, helping them manage capacity, optimize costs, and plan strategically. According to the results, this approach is capable of improving the efficiency and sustainability of small-scale solar installations for business and personal use.



Materials and methods

In the current study a photovoltaic system – 5KW is considered, installed on the roof of a residential building in Simitli, Blagoevgrad, south-western Bulgaria.

The generated power (kW) from the PV system between 2013 and 2023 for ten years.

In this study we use ARIMA method, a fundamental approach for time series forecasting. The core goal of the ARIMA technique is to forecast future trends in PV yields by focusing on the changes between successive values within the series rather than solely on the observed values themselves. ARIMA models are constructed using three key parameters: p, d, and q [1]. The autoregressive parameter, p, accounts for the influence of observations from the preceding p time points. The integrated parameter, d, reflects the underlying trend of the data by incorporating the necessary differencing to achieve stationarity. The moving average parameter, q, smooths short-term fluctuations by incorporating q lagged forecast errors into the model.

Results

Year	January	February	March	April	May	June	July	August	September	October	November	December
2013						146.00	171.68	161.72	132.68	110.88	58.04	61.49
2014	31.65	87.52	118.98	108.92	138.09	151.58	160.45	156.00	104.94	77.15	45.63	34.10
2015	62.70	86.11	82.99	140.85	153.54	154.39	173.15	150.95	93.76	74.60	29.47	0.00
2016	39.79	66.73	88.79	112.51	116.88	130.07	139.19	130.35	100.63	70.39	48.79	57.76
2017	35.56	62.21	91.37	110.31	116.50	125.54	132.34	126.99	97.33	94.60	43.19	40.31
2018	50.57	41.85	71.84	119.55	128.41	113.32	139.06	134.24	125.16	103.93	55.10	39.42
2019	40.79	85.28	135.16	125.36	138.68	154.70	167.48	164.31	133.98	91.34	46.58	23.99
2020	66.51	87.28	106.36	134.69	140.61	140.40	164.45	150.94	132.92	95.18	69.45	34.75
2021	49.80	79.06	115.22	126.79	147.20	156.39	167.90	149.59	122.80	87.26	53.96	39.28
2022	72.07	73.75	118.38	125.76	157.30	158.20	171.33	137.63	127.55	111.38	61.42	51.41
2023	40.95	86.34	71.58	108.37	108.78	143.79	166.43					
Mean	49.04	75.61	100.07	121.31	134.60	143.12	159.41	146.27	117.17	91.67	51.16	42.50
value												
Year	3.98%	6.14%	8.12%	9.85%	10.93%	11.62%	12.94%	11.87%	9.51%	7.44%	4.15%	3.45%
portion												

- ARIMA approaches have been applied to forecast the data from the 5KW photovoltaic system for the following 17 months. These ARIMA approaches were implemented using the IBM SPSS Statistics software product [1-5].
- The autocorrelations and partial autocorrelations are calculated, several ARIMA(p,d,q) models with fixed values of the parameters p, d, and q are proposed, as well as their characteristics and predictions.
- In this study, we proposed a quantitative approach to forecast the future values of both the specific PV system yield and the total yield using ARIMA models.
- Our suggested models demonstrated the ability to produce reliable and robust forecasts, making them applicable in various practical scenarios, such as energy management and planning for grid-connected solar photovoltaic systems.

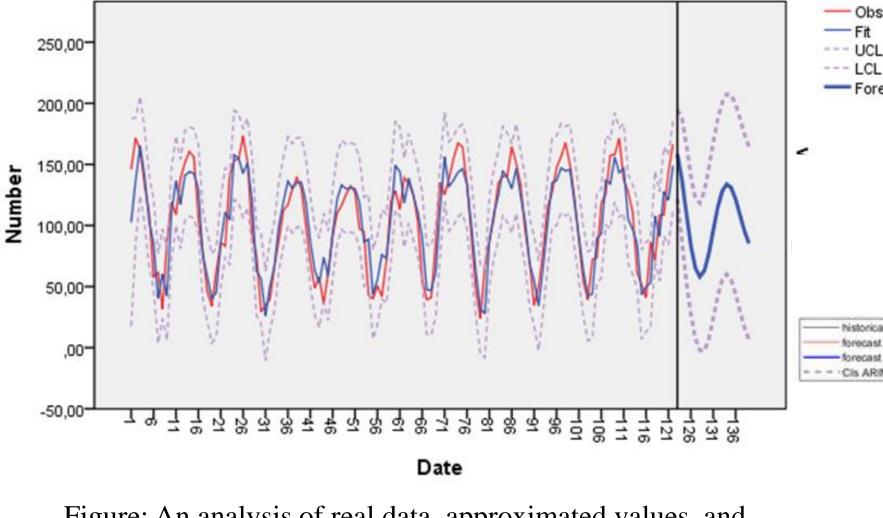
Residual ACF

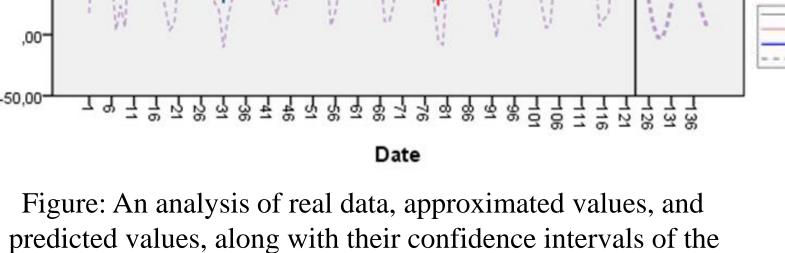
Table: Autocorrelations. Series: Specific PV System Yield

T	A . 1	C(1 F *	Box-Ljung Statistic				
Lag	Autocorrelation	Std. Error*	Value	df	Sig. **		
1	0,789	0,089	77,881	1	0,000		
2	0,437	0,089	101,949	2	0,000		
3	0,000	0,089	101,949	3	0,000		
4	-0,405	0,088	122,993	4	0,000		
5	-0,670	0,088	181,058	5	0,000		
6	-0,760	0,088	256,444	6	0,000		
7	-0,666	0,087	314,849	7	0,000		
8	-0,387	0,087	334,680	8	0,000		
9	0,001	0,086	334,680	9	0,000		
10	0,409	0,086	357,330	10	0,000		
11	0,720	0,086	427,926	11	0,000		
12	0,819	0,085	520,136	12	0,000		
13	0,689	0,085	585,935	13	0,000		
14	0,381	0,084	606,274	14	0,000		
15	-0,026	0,084	606,367	15	0,000		
16	-0,365	0,084	625,335	16	0,000		

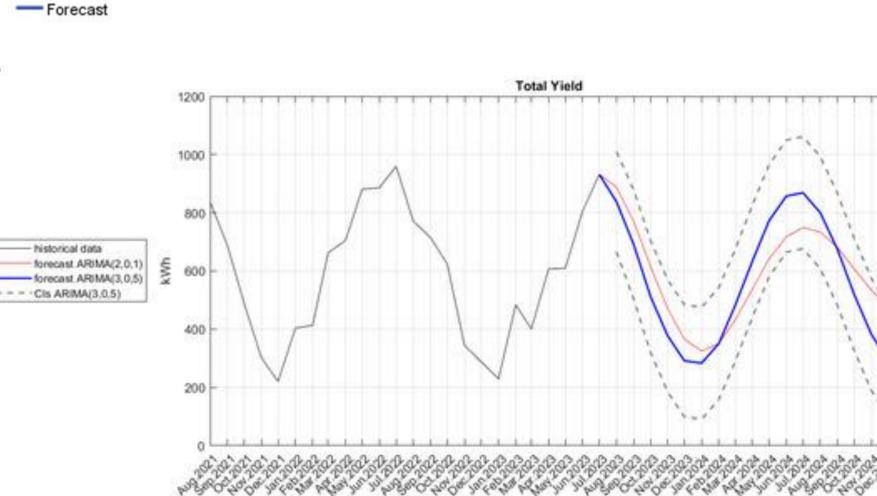
Table: Partial Autocorrelations. Series: Specific PV System Viold

-	System Yield.							
	LagPartial Au	tocorrelation Std. Error						
1	0,789	0,091						
2	-0,493	0,091						
3	-0,441	0,091						
4	-0,299	0,091						
5	-0,149	0,091						
6	-0,174	0,091						
7	-0,151	0,091						
8	0,080	0,091						
9	0,169	0,091						
10	0,257	0,091						
11	0,239	0,091						
12	0,067	0,091						
13	-0,013	0,091						
14	0,000	0,091						
15	-0,076	0,091						
16	0,202	0,091						


	System Hera:								
	LagPartial Auto	correlation Std. Error							
$\overline{1}$	0,789	0,091							
2	-0,493	0,091							
3	-0,441	0,091							
4	-0,299	0,091							
5	-0,149	0,091							
6	-0,174	0,091							
7	-0,151	0,091							
8	0,080	0,091							
9	0,169	0,091							
10	0,257	0,091							
11	0,239	0,091							
12	0,067	0,091							
13	-0,013	0,091							
14	0,000	0,091							
15	-0,076	0,091							
17	0.202	0.001							


Residual Figure: The values and confidence interval of ACF and PACF errors of the ARIMA (3,0,4) model.

Specific PV system yield: (a) residual ACF; (b) residual PACF.


* The underlying process assumed is independence (white noise). ** Based on the asymptotic chi-square approximation.

				Mod	lel Fit						
Fit Statistic	Mean	SE	Minimum	Maximum	Percentile						
					5	10	25	50	75	90	95
Stationary R-squared	0,802	•	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802
R-squared	0,802	•	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802	0,802
RMSE	18,929	•	18,929	18,929	18,929	18,929	18,929	18,929	18,929	18,929	18,929
MAPE	18,591	•	18,591	18,591	18,591	18,591	18,591	18,591	18,591	18,591	18,591
MaxAPE	107,196	•	107,196	107,196	107,196	107,196	107,196	107,196	107,196	107,196	107,196
MAE	14,703	•	14,703	14,703	14,703	14,703	14,703	14,703	14,703	14,703	14,703
MaxAE	45,534	•	45,534	45,534	45,534	45,534	45,534	45,534	45,534	45,534	45,534
Normalized BIC	6,039	•	6,039	6,039	6,039	6,039	6,039	6,039	6,039	6,039	6,039

ARIMA(2,0,1) model.

Residual PACF

Figure. A comparison between the real data, predicted values, and their confidence intervals of the ARIMA (2,0,1) and ARIMA (3,0,4) models: specific PV system yield.

- 2. Dada, M., Popoola, P. Recent advances in solar photovoltaic materials and systems for energy storage applications: a re-view. Beni-Suef Univ J Basic Appl Sci 2023, 12:66, 2–15 https://doi.org/10.1186/s43088-023-00405-5
 - Hayat, M., Ali, D., Monyake, K., Alagha, L., Ahmed, N. Solar energy—a look into power generation, challenges, and a so-lar-powered future. Int J Energy Res 2019 43(3), 1049–1067. Gong, J., Li, C., Wasielewski, M. Advances in solar energy conversion. Chem Soc Rev 2019 48(7), 1862–1864.
- 5. Bulgarian Photovoltaic Association: https://www.bpva.org/en/index

References 1. Sapundzhi F, Chikalov A, Georgiev S, Georgiev I. Predictive Modeling of Photovoltaic Energy Yield Using an ARIMA Approach. Applied Sciences. 2024; 14(23):11192. https://doi.org/10.3390/app142311192