The 6th International Electronic Conference on Applied Sciences

09–11 December 2025 | Online

Altitude Control in an Unmanned Aerial Vehicle Through Deflection of Elevator

Muhammad Hashier Muneeb Farrukh, Dr. Syed Irtiza Ali Shah, Ibtesam Hayat, Hafiz Usama Tanveer, Rai Faisal Aslam,
Hasham Tanveer

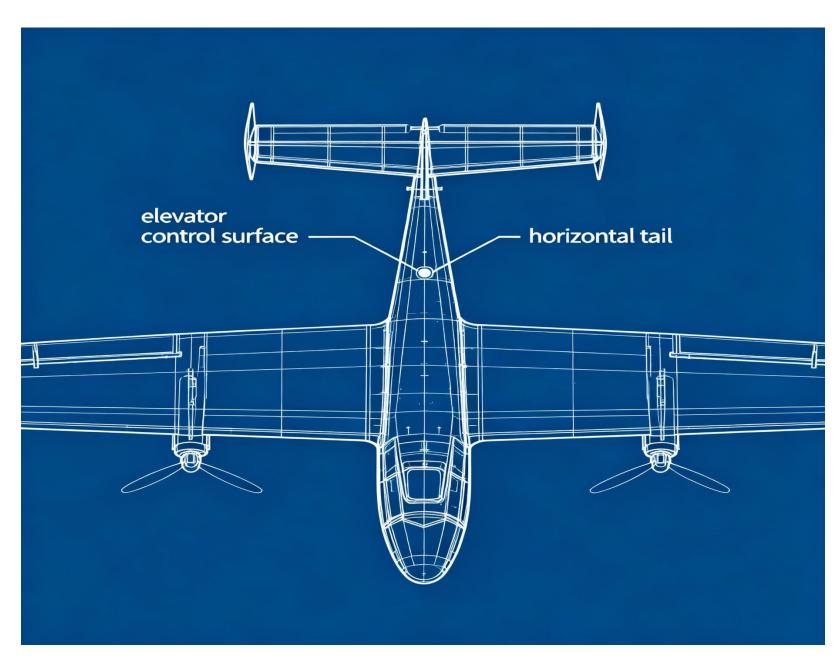
St. Cloud State University, National University of Science and Technology, Air University, George Mason University, St. Cloud State University, Drexel University

RESEARCH OBJECTIVE

Development of an efficient altitude control system for unmanned aerial vehicles through precise elevator deflection mechanisms using control engineering principles.

PROBLEM STATEMENT

- Controlling vertical height using elevator control input
- Maintaining stability during altitude transitions
- Achieving precise altitude tracking with minimal error
- Optimized PID controller design for altitude stabilization
- Comprehensive stability analysis through control theory


ELEVATOR CONTROL MECHANISM

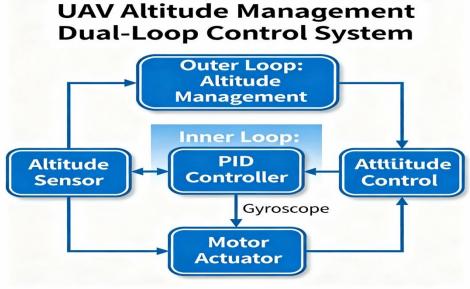
Flight Control Surfaces:

- •Elevators: Primary flight control surfaces located on the horizontal tail
- •Function: Control aircraft pitch attitude and angle of attack
- •Mechanism: Deflection changes airflow over tail surface
- •Effect: Alters lift distribution and vertical flight path

Control Distinction:

- •Elevator: Movable control surface for pitch control
- •Stabilizer: Fixed horizontal surface for stability

Fixed-wing UAV with elevator control surfaces


CONTROL SYSTEM ARCHITECTURE

Piloting Methods:

- •Ground Simulation: Remote pilot control with ground station
- •Onboard Control: Autonomous flight management systems

Dual-Loop Control System:

- •Inner Loop: Stability augmentation and robustness enhancement
- Outer Loop: Reference tracking and command following

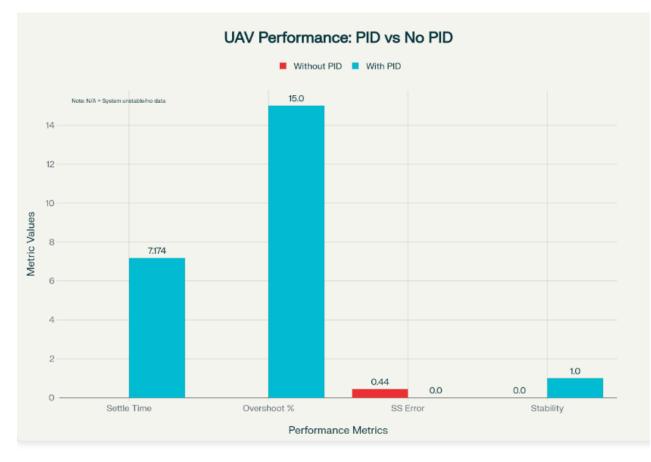
Dual-loop control architecture for UAV altitude management

CONTROL STRATEGIES FOR UAV SYSTEMS

Control Method	Primary Application	Key Advantage	Limitation
GPS-based Control	Navigation & Positioning	Real-time positioning accuracy	Signal dependency and interference
Neural Network Control	Complex Non- linear Systems	Learning and adaptation capability	High computational intensity
Adaptive Control	Parameter Uncertainty	Adaptive to system changes	Implementation complexity
PID Controller	Altitude Stabilization	Simple and highly effective	Fixed parameter tuning

STEP RESPONSE ANALYSIS

Without PID Controller:


- Unstable response
- Infinite settling time
- Unbounded overshoot
- Poor disturbance rejection

With PID Controller:

- Stable response achieved
- Settling time: 7.174 seconds
- Controlled overshoot: 15%
- Excellent tracking performance

Key Performance Improvements:

- **Stability Achievement:** System becomes stable and controllable
- Minimal Steady-state Error: Approaching zero for step inputs
- Fast Response: Settling within acceptable time frame
- Robust Performance: Consistent behavior across operating conditions

Performance comparison: With and without PID controller

CONCLUSION

The PID controller implementation successfully stabilizes the UAV altitude control system, transforming an inherently unstable system into a robust and well-performing control system. The controller achieves zero steady-state error for step inputs, maintains stability with finite error for ramp inputs, and demonstrates excellent transient response characteristics with settling time of 7.174 seconds and overshoot of 15%.