The 6th International Electronic Conference on Applied Sciences

09-11 December 2025 | Online

Four-component substitutional solid solutions of metal-organic frameworks with rare earth metal ions

Anton G. Mushtakov^{a,b}, Daniil A. Valeshny^b, Viktor L. Demin^c, Irina A. Kaurova^{b*}, Galina M. Kuz'micheva^b, and Ekaterina B. Markova^{a,b}
^aPeoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow 117198, Russia

^bMIREA - Russian Technological University, 78 Vernadsky av., Moscow 119454, Russia

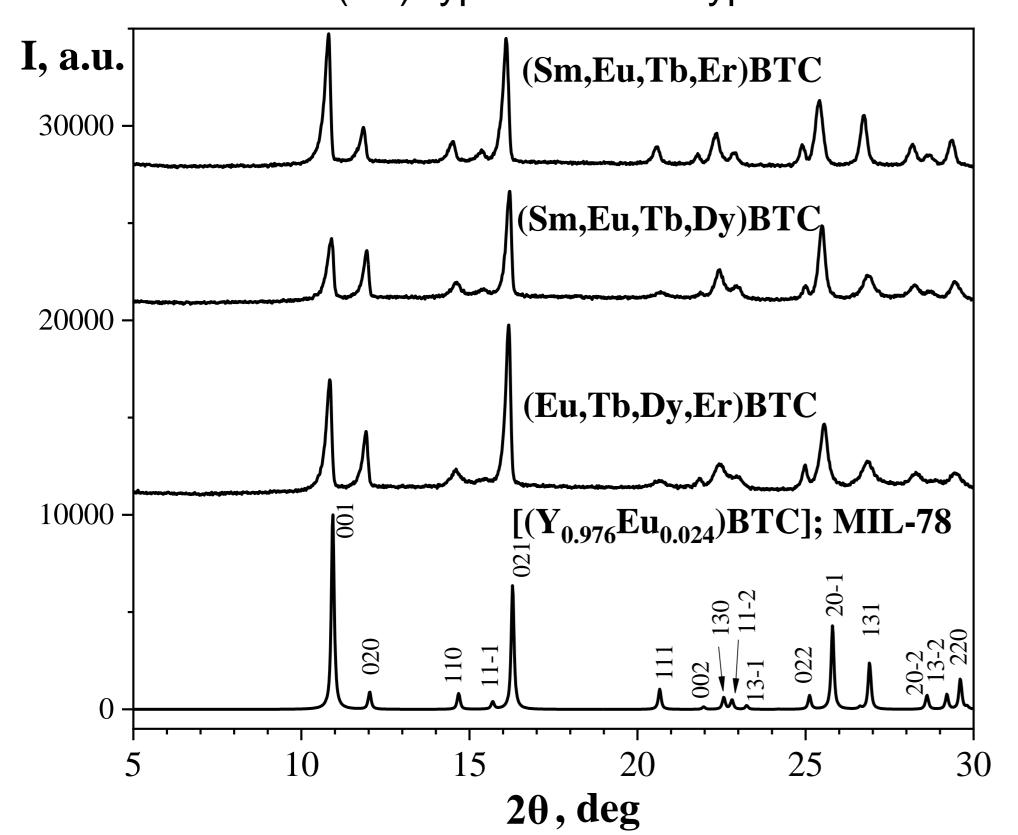
^cA. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 31 Leninsky av., Moscow 119071, Russia

INTRODUCTION & AIM

Multicomponent metal-organic frameworks (MOFs), which consist of 4 or more cations connected by an organic linker, can be classified as high-entropy materials (HEMs) when a "cocktail" effect, distortion of the local and/or atomic structure, slow diffusion, high entropy of mixing, and high concentration of valence electrons occur. As a result, the manifestation of a sudden increase in the characteristics of properties (but not all!) compared to single-component analogs is observed.

The aim of this work is to synthesize and characterize new multicomponent MOFs, obtained by the hydrothermal method by mixing salts $RE^{3+}(NO_3)_3 \cdot xH_2O$ (RE = La-Lu) (in an equimolar ratio), H_3BTC (benzene-1,3,5-tricarboxylic acid) and NaOH in distilled water.

X-RAY POWDER DIFFRACTION (XRPD) (PowDiX 600; CuK α 1; Ni-filter; 2 θ = 5-30°)

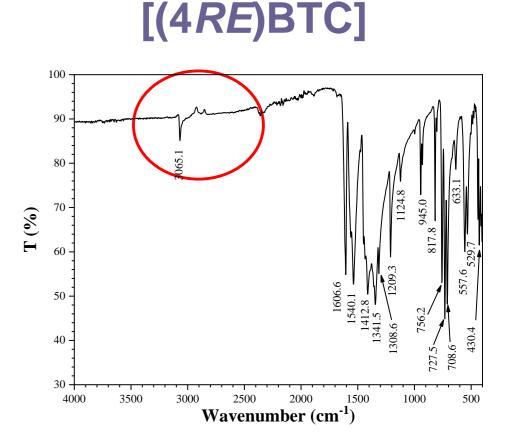

 $\gt RE^{3+}$ = La-Pr – single-phase; [(4RE)BTC(H₂O)₆]; Structure: REBTC(Cc)-type; space group Cc, Z=4;

 $> RE^{3+} = Sm-Lu - single-phase; [(4RE)BTC];$

Structure: MIL-78-type; space group C2/m, Z = 8;

 $\triangleright RE^{3+} = Nd - two-phase;$

Structure: REBTC(Cc)-type + MIL-78-type

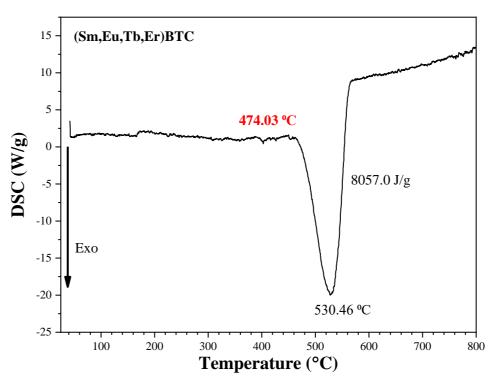


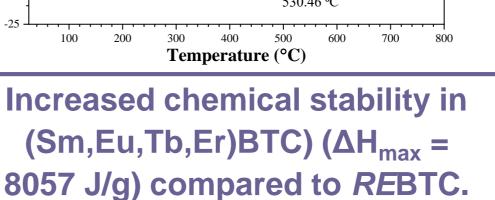
In the diffraction patterns of (4RE)BTC samples, the redistribution of intensities of main peaks is observed, which is caused by the type and content of RE in (4RE)BTC

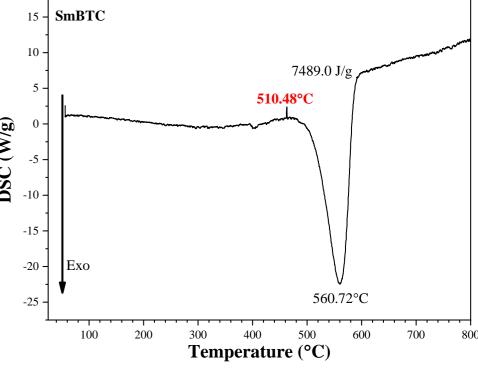
IR SPECTROSCOPY (WQF-530A, k = 350–4000 cm⁻¹)

IR spectra of [(4RE)BTC] and $[(4RE)BTC(H_2O)_6]$ confirm their compositions.

[(4RE)BTC(H₂O)₆]


Bands at ~3480-~3230 cm⁻¹ – water in the framework


Band at ~3070 cm⁻¹ -


DIFFERENTIAL SCANNING CALORIMETRY (DSC) (ZCR-A; air; flow rate, 60 ml/min; scanning rate, 10°C/min)

The (Sm,Eu,Tb,Er)BTC has the highest chemical stability, greater than that of its components.

However, the highest thermal stability (560.72°C) is observed in the SmBTC component of (Sm,Eu,Tb,Dy)BTC and (Sm,Eu,Tb,Er)BTC, which may be due to a higher degree of amorphism in multicomponent phases compared to single-component ones.

Exoeffect at 560.49°C ΔH=7608.7 J/g

CONCLUSION

Four-component multicomponent MOF of a MIL-78 type with the general composition (4RE)BTC with rare earth metal ions ($RE^{3+} = Sm - Lu$) and a benzene-1,3,5-tricarboxylic acid linker, firstly synthesized by the hydrothermal method, have increased chemical stability compared to single-component REBTC.

FUNDING

Ministry of Science and Higher Education of the Russian Federation, grant № FSFZ-2024-0003.