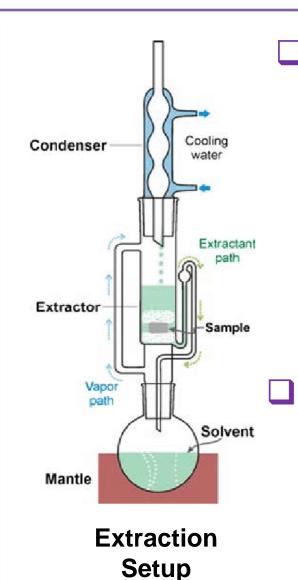
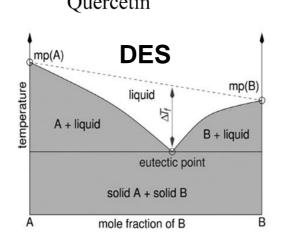
The 6th International Electronic Conference on Applied Sciences

09-11 December 2025 | Online


Molecular-Level Insights into Quercetin and Caffeic Acid Extraction Using Choline Chloride-Glycerol Deep Eutectic Solvent: A Quantum Mechanical Approach

Toyese OYEGOKE*, Lucia Kuyet CHRISTOPHER, and Sharon OLORUNFEMI

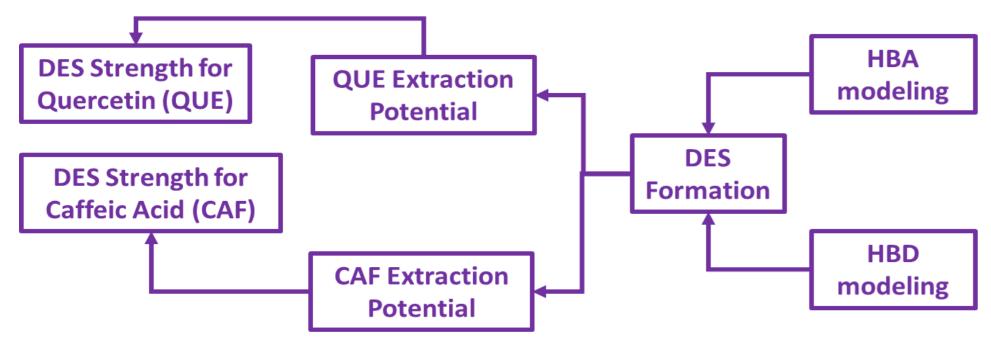
CAD Engineering of Process & Reactive Interfaces Group, Chemical Engineering Dept., ABU Zaria, Nigeria.


*Corresponding email: OyegokeToyese@gmail.com

INTRODUCTION & AIM

- Quercetin (QUE) and caffeic acid (CAF) are valuable bioactive compounds with health benefits [1,2].
- ☐ Efficient and sustainable extraction methods [3] are essential for their recovery.
- □ Deep eutectic solvents (DES), like choline chloride—glycerol (CLC-GLY), offer a green alternative to conventional solvents.

CAFFEIC ACID OH OH OH OH OH



Aim of Study:

To investigate, using quantum mechanical (DFT) calculations, the molecular interactions between quercetin and caffeic acid with choline chloride—glycerol DES, and to assess its extraction efficiency compared to conventional solvent (ethanol – ETOH).

METHOD

Study Flow deployed in the Computational Study

Computational Resource:

Student Spartan v9

Computational Detail:

Density Functional Theory (DFT) [4] and compare its extraction potential with ethanol. All calculations were carried out using the wB97X-D functional, which accounts for dispersion corrections, starting from PM3-optimized geometries. A dual basis set (6-31G(d)/3-21G*) was employed in the gas phase.

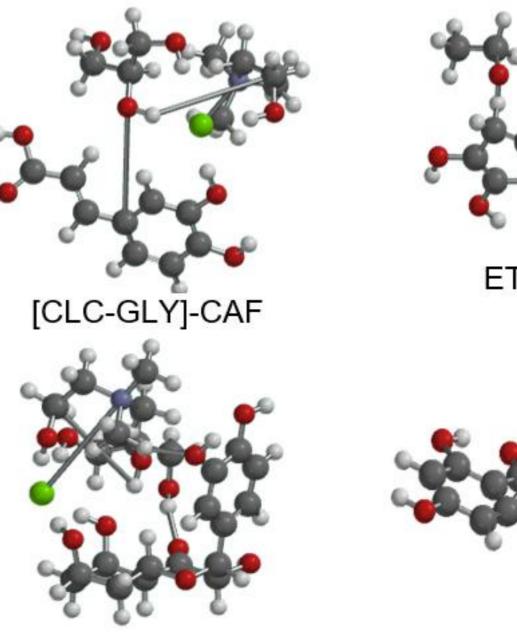
RESULTS & DISCUSSION

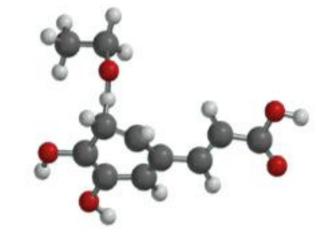
- ☐ Choline chloride is a better acceptor (more reactive, less stable).
- Glycerol and choline chloride form a stable DES with a formation energy of -1.48 eV.

Table 1. DES Formation mechanism

Specie	номо	LUMO	E Gap	Interactio	Formation		
				HBA LUMO	НВА НОМО	energy (eV)	
НВА	-7.90	2.65	10.55	10.55	10.55	-1.48	
HBD	-9.90	3.61	13.51	12.55	11.52		

Table 2. Molecular properties


				CAF IEG		QUE IEG	
Species	номо	LUMO	E Gap	HBA LUMO	НВА НОМО	HBA LUMO	НВА НОМО
CAF	-8.69	-0.65	8.04	8.04	8.04	8.41	8.52
QUE	-9.17	-0.28	8.89	8.52	8.41	8.89	8.89
CLC-GLY	-9.00	2.19	11.19	8.35	10.88	8.72	11.36
ЕТОН	-9.78	4.28	14.06	9.13	12.97	9.50	13.45


- □ CLC–GLY (11.19 eV) has a lower energy gap than ethanol (14.06 eV), so it's more reactive but less stable.
- ☐ CLC—GLY showed better interaction with both CAF and QUE compared to the use of ethanol.
- □ CLC–GLY shows stronger binding with caffeic acid (−1.12 eV) and quercetin (−0.96 eV) than ethanol (−0.33 eV, −0.30 eV).
- ☐ CLC—GLY indicates better extraction potential than ethanol.

[CLC-GLY]-QUE


Table 3. Bioactive compounds extractive potential of the different solvents

Species	CAF Binding energy (eV)	QUE Binding energy (eV)	
CLC-GLY	-1.12	-0.96	
ETOH	-0.33	-0.30	

ETOH-CAF

ETOH-QUE

Figure 1

Molecular

structure of CAF

and QUE with

the different

solvents

CONCLUSION

- ☐ CLC–GLY showed stronger binding with quercetin and caffeic acid than ethanol, indicating better extraction performance.
- □ Higher reactivity and green nature make CLC–GLY, a promising solvent for sustainable pharmaceutical use.

ACKNOWLEDGEMENT

REFERENCES

- [1] Safa et al. (2024). *Front. Biosci. (Elite Ed)*, 16(4):35.
- [2] Ming Z. (2021). *Horticulturae* 7(11):491.
- [3] Magdalena R. (2021). Scientific Technical Review 71(2):41.
- [4] Kyle et al. (2014). *Journal of Chemical Education* 91(12):2116-2123