

# The 6th International Electronic Conference on Applied Sciences



09-11 December 2025 | Online

# Numerical Simulation of Water Table Dynamics for Construction Planning

David Beltrán-Vargas <sup>1\*</sup>, Fernando García-Páez <sup>1</sup>, Manuel Martínez-Morales <sup>2</sup>

<sup>1</sup>Department of Civil Engineering, Autonomous University of Sinaloa, 80013, Culiacán, Sinaloa, México

<sup>2</sup>Groundwater Hydrology Division, Mexican Institute of Water Technology, 62550, Juitepec Morelos, México

### **INTRODUCTION & AIM**

#### Context

Groundwater flow in coastal urban areas is influenced by different factors such as tides, precipitation, lagoon–aquifer interactions, regional flow, and urban constructions that modify subsurface conditions.

#### **Problem Statement**

Buildings founded below the phreatic surface require an accurate estimation of groundwater level variations to prevent potential problems during the construction process.

#### Aim

To simulate and analyze short-term groundwater level variations in a coastal area of Mazatlán, using MODFLOW 6 and ModelMuse, as a tool for optimizing construction planning below the water table.

#### **METHOD**

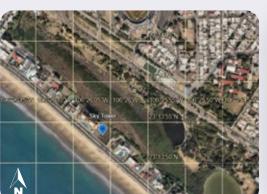

The following section summarizes the modeling approach, boundary conditions, and calibration process applied to simulate groundwater dynamics



Figure 1. Workflow diagram.

| Data                                     | DEM Piezometric level Tidal fluctuation Urban infrastructure                                                           |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Software                                 | QGIS, MODFLOW (v.6.6.3) and ModelMuse (v5.4.0.0)                                                                       |
| Aquifer type                             | Unconfined coastal aquifer influenced by the Pacific Ocean and Laguna del Camarón                                      |
| Model domain                             | 1.39 × 0.74 km, 5 × 5 m cell size (DEM from QGIS)                                                                      |
| Boundary conditions –<br>MODFLOW Package | Ocean (tidal fluctuation) – GHB<br>Lagoon – LAK<br>Regional groundwater flow – GHB<br>Barriers – HFB                   |
| Simulations                              | Six transient models (Nov 2023–Apr 2024) representing critical conditions (highest piezometric level measured in situ) |
| Calibration                              | Three daily piezometric records (09:00, 12:00, 15:00 h) used to adjust hydraulic parameters                            |

Table 1. Overview of modeling methodology



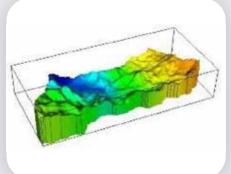







Figure 2. Study case location.

Figure 3. Numerical model conceptualization.



Figure 4. Representative Groundwater Flow Network

## **RESULTS**

The following figures and tables present the comparison between observed and simulated groundwater levels, as well as the model's performance metrics for each critical scenario.

| Day        | Hour  | Observed level (m.a.s.l.) | Simulated level (m.a.s.l.) |
|------------|-------|---------------------------|----------------------------|
| 11/14/2023 | 09:00 | 0.24                      | 0.315866                   |
| 11/14/2023 | 12:00 | 0.36                      | 0.398107                   |
| 11/14/2023 | 15:00 | 0.53                      | 0.501742                   |
| 12/13/2023 | 09:00 | 0.17                      | 0.230834                   |
| 12/13/2023 | 12:00 | 0.29                      | 0.348725                   |
| 12/13/2023 | 15:00 | 0.46                      | 0.477942                   |
| 01/11/2024 | 09:00 | 0.14                      | 0.196723                   |
| 01/11/2024 | 12:00 | 0.26                      | 0.320904                   |
| 01/11/2024 | 15:00 | 0.41                      | 0.46821                    |
| 02/09/2024 | 09:00 | 0.1                       | 0.015872                   |
| 02/09/2024 | 12:00 | 0.25                      | 0.20532                    |
| 02/09/2024 | 15:00 | 0.38                      | 0.381399                   |
| 03/09/2024 | 09:00 | -0.06                     | 0.018105                   |
| 03/09/2024 | 12:00 | 0.14                      | 0.182957                   |
| 03/09/2024 | 15:00 | 0.35                      | 0.350492                   |
| 04/09/2024 | 09:00 | -0.12                     | -0.06316                   |
| 04/09/2024 | 12:00 | 0.01                      | -0.082544                  |
| 04/09/2024 | 15:00 | 0.31                      | 0.219072                   |

| Date       | MAE (m) | RMSE (m) |
|------------|---------|----------|
| 2023-11-14 | 0.047   | 0.052    |
| 2023-12-13 | 0.046   | 0.050    |
| 2024-01-11 | 0.049   | 0.051    |
| 2024-02-09 | 0.032   | 0.038    |
| 2024-03-09 | 0.041   | 0.051    |
| 2024-04-09 | 0.080   | 0.082    |

Table 3. MAE and RMSE per month.

MAE (m) RMSE (m)

Period

| Nov 2023 – Apr 2024           | 0.049       | 0.056     |  |  |  |  |
|-------------------------------|-------------|-----------|--|--|--|--|
| Table 4. MAE and RMSE global. |             |           |  |  |  |  |
| ŭ                             |             |           |  |  |  |  |
| TION, FLUCTUATION             |             |           |  |  |  |  |
| 164 44 40                     | 4.4         | 4 4 4     |  |  |  |  |
| I SEALAS                      | AAAA        | AAAA      |  |  |  |  |
| 10 4 4 6 6 6 6                |             | 8569      |  |  |  |  |
| 1 4 4 4 4 5 5                 | 20 th 24 th | 1 4 4 4 4 |  |  |  |  |

Table 2. Observed level vs simulated level.

Figure 5. Tidal observations

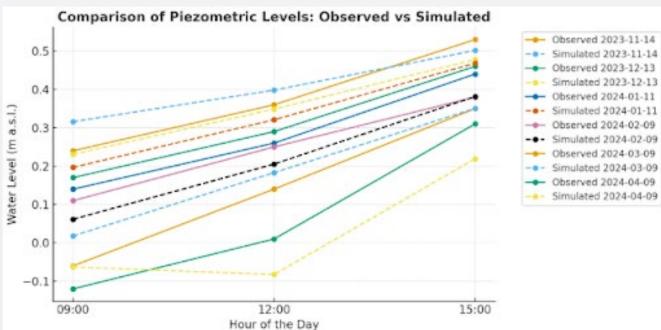



Figure 6. Observed level vs simulated level.

# **CONCLUSIONS**

- The numerical model accurately reproduced groundwater fluctuations under tidal influence, with deviations of only a few centimeters.
- Tides are the main factor controlling short-term groundwater dynamics in this project.
- The model proves to be a reliable tool for planning constructions below the water table, such as the new project founded at approximately –2 m.a.s.l., helping anticipate dewatering needs and ensure safer, more sustainable construction.

#### **FURTHER WORKS**

- The integration of numerical modeling with structural design tools is also planned to optimize foundation and groundwater control strategies in coastal construction projects.
- Additional monitoring data will be incorporated to evaluate the performance of dewatering systems during excavation.
- These advances aim to promote more sustainable construction practices, improving groundwater management and minimizing environmental impacts in urban coastal areas.

