# The 6th International Electronic Conference on Applied Sciences



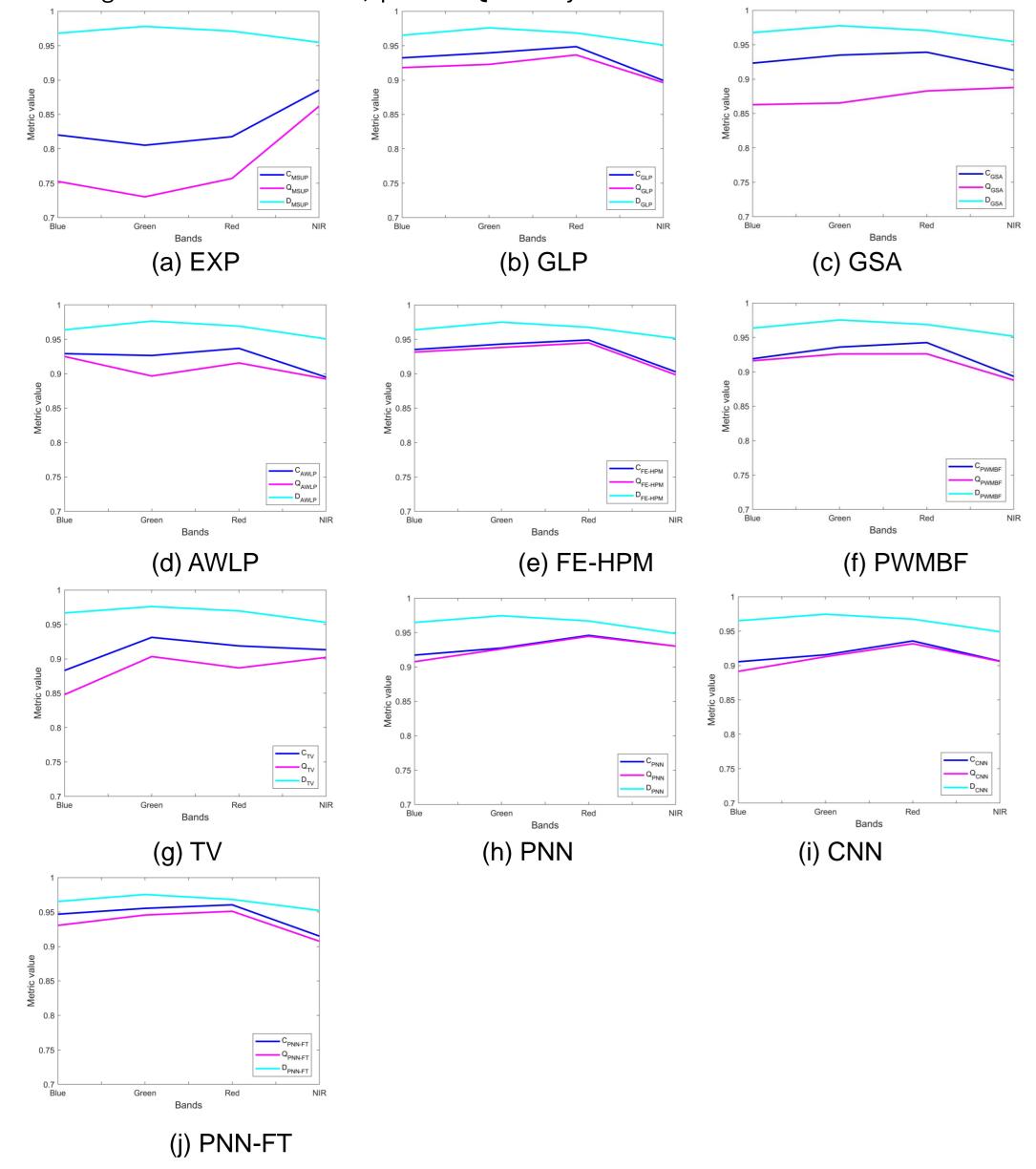
09-11 December 2025 | Online

## Pixel reflectance estimation with deep learning pansharpening methods

**Hind Hallabia** 

University Institute of Technology at Saint Etienne, Université Jean Monnet<sup>1</sup> Hubert Curien Laboratory, France<sup>2</sup>

#### INTRODUCTION & AIM


Diversity of remote sensing data are characterized by the richness and the variability of their pixel reflectance.

Statistical pansharpening experiments have been proposed to study the diversity of high resolution remote sensing images.

Quality assessment experiments have been studied in the pixel level (correlation, UIQI and Euclidian distance) with respect to WALD and QNR protocols.

#### **METHOD**

Figure 1. Band based quality metrics estimated on HOBART dataset at reduced scale. Legend: Blue: **Correlation**, pink: **UIQI** and Cyan: **Euclidian distance**.



#### CONCLUSION & FUTURE WORK

- ✓ Reduced- and full-scale experiments have been conducted on two remote sensing data (HOBART and TRIPOLY).
- ✓ Quality assessment have been proposed by considering the pixel reflectance.

**Future work**: More areas will be investigated (as desert, ocean and land) in pansharpening purpose.

### REFERENCES

#### **RESULTS & DISCUSSION**

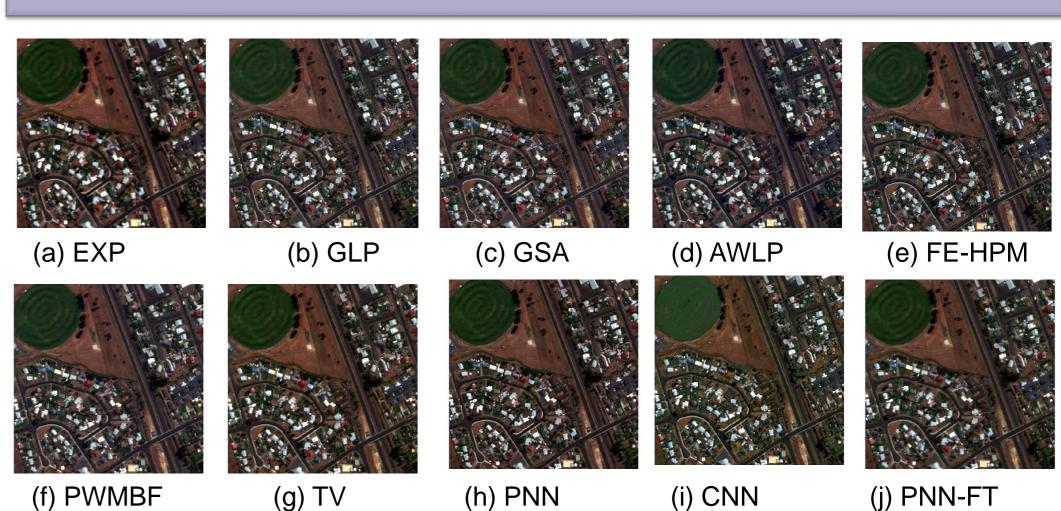



Figure 2. Fusion results conducted on HOBART dataset. The **bold** is ranked first. The *italic* is ranked the second.

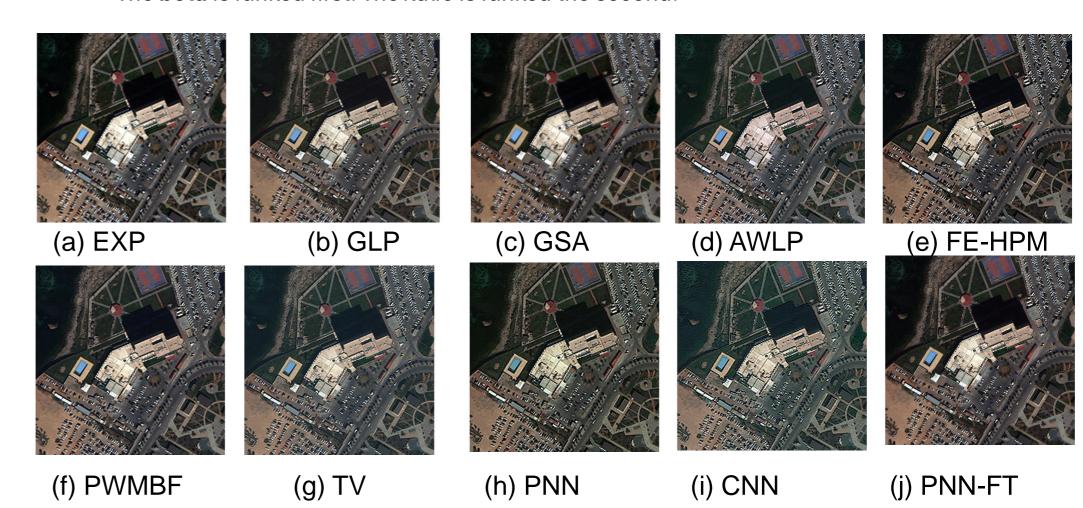



Figure 3. Fusion results conducted on TRIPOLY dataset. The **bold** is ranked first. The *italic* is ranked the second.

Table 1. Numerical results of pansharpening methods estimated on HOBART dataset. The **bold** is ranked the first. The *italic* is ranked the second.

| Method | Q4    | SAM   | <b>ERGAS</b> | SCC   | SSIM  | <b>PSNR</b> | QNR   |
|--------|-------|-------|--------------|-------|-------|-------------|-------|
| EXP    | 0.778 | 5.370 | 5.510        | 0.445 | 0.820 | -34.106     | 0.946 |
| GLP    | 0.921 | 5.085 | 3.697        | 0.681 | 0.908 | -31.434     | 0.795 |
| GSA    | 0.875 | 5.266 | 4.199        | 0.700 | 0.894 | -32.143     | 0.860 |
| AWLP   | 0.913 | 5.522 | 3.936        | 0.663 | 0.900 | -31.767     | 0.817 |
| FE_HPM | 0.930 | 5.060 | 3.550        | 0.697 | 0.910 | -31.157     | 0.797 |
| PWMBF  | 0.916 | 5.591 | 3.828        | 0.684 | 0.898 | -31.733     | 0.816 |
| TV     | 0.882 | 4.920 | 4.490        | 0.585 | 0.886 | -32.294     | 0.952 |
| PNN    | 0.928 | 4.367 | 3.537        | 0.665 | 0.920 | -30.856     | 0.972 |
| CNN    | 0.912 | 5.594 | 3.899        | 0.645 | 0.894 | -31.823     | 0.943 |
| PNN_FT | 0.934 | 4.790 | 3.354        | 0.742 | 0.917 | -30.647     | 0.893 |

Table 2. Numerical results of pansharpening methods estimated on TRIPOLY dataset. The **bold** is ranked the first. The *italic* is ranked the second.

|        | o     |       |              | 0000  |       |         |       |
|--------|-------|-------|--------------|-------|-------|---------|-------|
| Method | Q8    | SAM   | <b>ERGAS</b> | SCC   | SSIM  | PSNR    | QNR   |
| EXP    | 0.688 | 6.575 | 7.424        | 0.218 | 0.684 | -42.645 | 0.875 |
| GLP    | 0.878 | 6.090 | 4.819        | 0.749 | 0.871 | -38.861 | 0.827 |
| GSA    | 0.860 | 6.532 | 5.073        | 0.749 | 0.858 | -39.315 | 0.873 |
| AWLP   | 0.875 | 6.299 | 4.868        | 0.748 | 0.871 | -38.824 | 0.858 |
| FE_HPM | 0.881 | 6.200 | 4.845        | 0.746 | 0.869 | -38.930 | 0.824 |
| PWMBF  | 0.888 | 6.496 | 4.863        | 0.758 | 0.871 | -38.939 | 0.779 |
| TV     | 0.903 | 6.168 | 4.596        | 0.759 | 0.892 | -38.447 | 0.895 |
| PNN    | 0.863 | 6.726 | 5.348        | 0.634 | 0.839 | -39.736 | 0.943 |
| CNN    | 0.857 | 8.005 | 5.629        | 0.641 | 0.788 | -40.181 | 0.847 |
| PNN_FT | 0.852 | 6.348 | 5.313        | 0.674 | 0.839 | -39.714 | 0.884 |