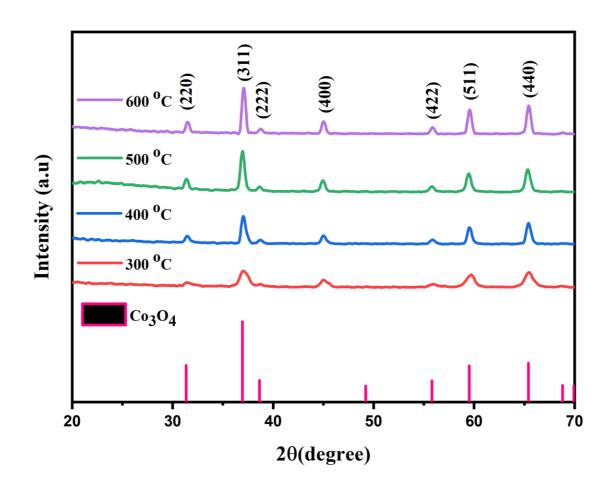
The 6th International Electronic Conference on Applied Sciences

09-11 December 2025 | Online

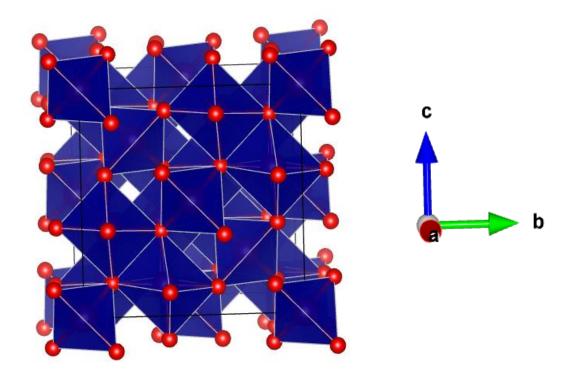
Structural and Optical Characterization of Co₃O₄ Nanostructures Synthesized via Sol–Gel Method and Calcined at Different Temperatures

B. S. Samyuktha, A. Sathiya Priya*, R. Indhumathi Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India *Corresponding author: sathiyapriya.phy@sairam .edu.in

INTRODUCTION & AIM

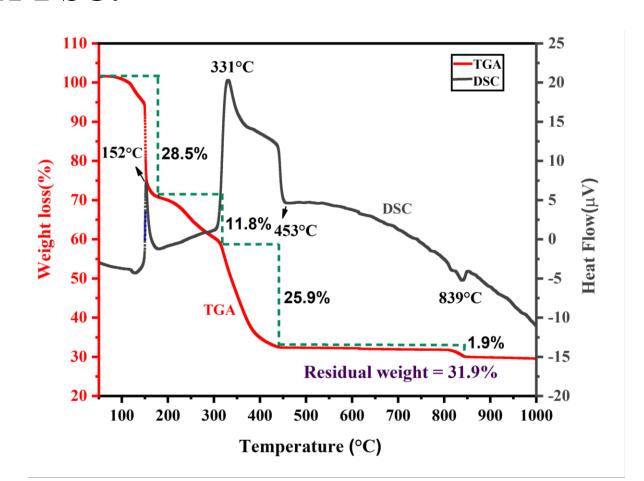

To synthesize cobalt oxide (Co₃O₄) nanoparticles using the sol–gel method and systematically investigate the effect of calcination temperature (300–600 °C) on their structural, thermal, and optical properties for potential applications in energy storage, photocatalysis, electrocatalysis, and environmental remediation. Cobalt oxide (Co₃O₄) is a mixed-valence transition metal oxide with a normal spinel structure, where Co²⁺ occupies tetrahedral sites and Co³⁺ resides in octahedral sites [1]. Among various synthesis routes, the sol–gel method provides advantages such as homogeneous precursor mixing, controlled particle growth, and improved phase purity. However, the influence of calcination temperature on the development of crystallinity, thermal stability, and optical characteristics of citric-acid-assisted sol–gel derived Co₃O₄ nanoparticles remains less explored [2,3]. This study addresses this gap by systematically examining Co₃O₄ nanostructures processed at different temperatures to understand their temperature-dependent structural evolution and functional behavior.

METHOD

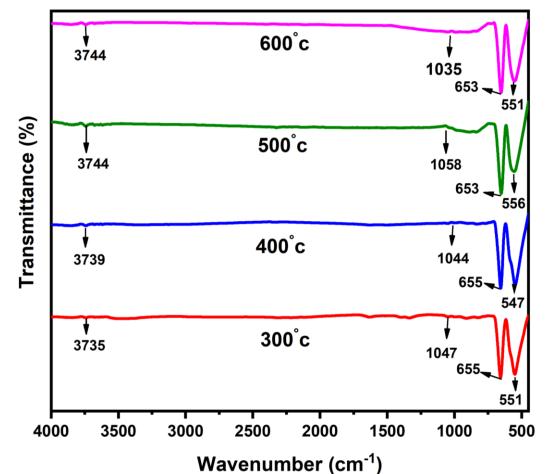

Cobalt oxide nanoparticles were synthesized using a citrate-assisted sol-gel method. Cobalt nitrate hexahydrate [Co(NO₃)₂·6H₂O] and citric acid were dissolved separately in distilled water in a 1:1 molar ratio and mixed under continuous stirring. The resulting pink solution was heated at 100 °C for 2 hours to form a homogeneous sol, which gradually transformed into a gel during evaporation. The formed xerogel was dried at 130 °C for 2 hours to remove residual moisture and then calcined at 300, 400, 500, and 600 °C for 3 hours. After calcination, black Co₃O₄ nanoparticles were obtained, cooled to room temperature, ground using a mortar and pestle, and used for further characterization.

RESULTS & DISCUSSION

X-Ray diffraction:

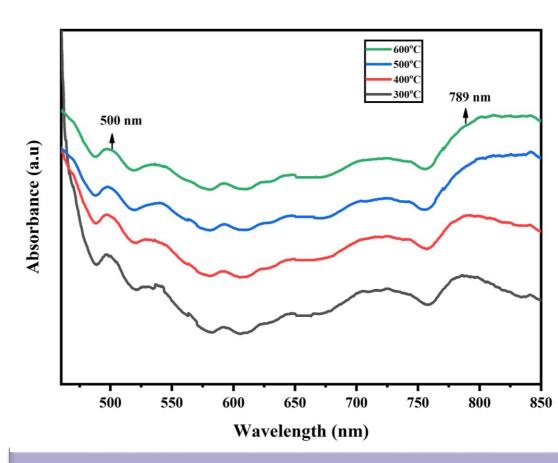


JCPDS Card No: 01 - 074 - 1656Crystal Structure: Spinel Cubic phase Space Group: Fd3m



Temperature	Average crystallite size (nm)	Dislocation density δ (m ⁻²)	Lattice parameter (Å)
300°C	15.373	0.0042	8.051
400°C	32.345	0.0009	8.057
500°C	33.948	0.0008	8.066
600°C	26.209	0.0014	8.062

TGA-DSC:



FT-IR Spectroscopy:

Bond	300 °C	400 °C	500 °C	600 °C
assignment				
(functional				
group)				
О-Н	3735	3739	3744	3744
vibrations				
С-Н	1047	1044	1058	1035
vibrations				
O-Co-O	655	655	653	653
stretching				
vibrations				
Co-O	551	547	556	551
stretching				
vibrations				

UV-Vis DRS:

Annealing Temperature	Band Gap Energy (eV)
300 °C	2.45
400 °C	2.44
500 °C	2.42
600 °C	2.43

CONCLUSION

Co₃O₄ nanoparticles were successfully synthesized and stabilized above 450 °C, forming a cubic spinel phase across 300–600 °C. Calcination temperature strongly influenced their microstructure and optical behavior, with crystallite size increasing up to 500 °C and slightly decreasing at 600 °C, while the band gap varied from 2.45 eV to 2.42 eV and rose marginally at higher temperature due to defect-related transitions. These results confirm that controlled calcination effectively tunes the structural and electronic properties of Co₃O₄, underscoring its strong potential for photocatalysis and energy-storage applications.

FUTURE WORK / REFERENCES

- 1. Crystals, 13 (2023) 634. https://doi.org/10.3390/cryst13040634.
- 2. Ceram. Int. 51 (2025) 11467–11479. https://doi.org/10.1016/j.ceramint.2025.01.001
- 3. Nanomaterials, 15, (2025) 932. https://doi.org/10.3390/nano15120932.