

The 6th International Electronic Conference on Applied Sciences

09-11 December 2025 | Online

IoT and Al-Driven Approaches for Energy Optimization in Off-Grid Solar Systems

Panagiotis - Priamos Koumoulos[®], Leonidas Mazarakis[®], Stylianos Katsoulis[®], Fotios Zantalis[®], Grigorios Koulouras^{*,®}

TelSiP Research Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica,
Ancient Olive Grove Campus, 250 Thivon Str., GR-12241 Athens, Greece

* Corresponding author

INTRODUCTION & AIM

The rapid expansion of off-grid solar photovoltaics necessitates robust IoT solutions to overcome intermittency and storage constraints, ensuring reliable autonomous operation.

- The Challenge: Autonomous solar microgrids face issues regarding intermittency, storage limitations, and efficiency management.
- ❖ The Need: Reliance on renewable sources (PV) requires intelligent strategies to ensure reliability without grid support.
- ❖ The Solution: Integration of Internet of Things (IoT) hardware with Artificial Intelligence (AI) for real-time monitoring and control.
- ❖ Objective: This study reviews IoT-based hardware platforms, communication protocols, and control strategies to identify optimal architectures for off-grid PV energy optimization.

METHODOLOGY

A structured literature review was conducted covering peer-reviewed journal articles, conference papers, and technical studies, most of them published between 2020 and 2025, with an emphasis on IoT-enabled PV microgrid implementations.

***** Key Focus Areas:

- ➤ Hardware Platforms Analyzed: Arduino, ESP32, NodeMCU, TTGO LoRa32, Raspberry Pi for sensing, monitoring, and edge analytics.
- ➤ Communication Protocols Evaluated: Wi-Fi, ZigBee, LoRaWAN, NB-IoT, MQTT, and CoAP, focusing on energy efficiency, range, reliability, and scalability.
- ➤ AI & Optimization Techniques Reviewed: ANN, LSTM, CNN-LSTM, RNN, PSO, GA, WOA-SA applied to PV forecasting, MPPT, DSM, and fault detection.
- Analysis of Experimental Frameworks: IoT–SCADA integrations (Node-RED, Grafana, InfluxDB), hybrid edge–cloud systems, and PV monitoring testbeds.

RESULTS & DISCUSSION

The review shows that integrating IoT hardware, efficient communication protocols, and Al-based analytical models significantly enhances energy performance, autonomy, and operational robustness in off-grid PV microgrids.

Study	Platform	Application	Algorithm / Model	Performance Metric	Networking	Security
[1]	Arduino Uno	Low-cost PV monitoring	-	Voltage error < 1%	GPRS (SIM900) telemetry	Low
[2]	ESP32	Irradiance & power monitoring	Linear regression	Energy efficiency +10%	Wi-Fi + MQTT	Medium
[3]	NodeMCU	PV energy forecasting	Regression / ANN	98.9% accuracy	Wi-Fi + Cloud API	Low
[4]	Raspberry Pi 4B	Solar tracker	PID + IoT SCADA	22% energy yield improvement	LAN / Node-RED + Grafana	Medium
[5]	LoRa Node	Remote PV monitoring	_	99% transmission reliability	Private LoRaWAN	High
[6]	ESP32 + Cloud	Predictive control	RNN	–18% latency	Wi-Fi + MQTT + Cloud feedback	Medium
[7]	Raspberry Pi + NodeMCU Edge	Fault detection	Lightweight CNN	97% accuracy; shading drop 15.89→9.07 W; dust drop 15.89→5.97 W	Wi-Fi (local)	Medium
[8]	Digital Twin Platform	Agrivoltaic optimization	ML regression	22% yield increase	Local IoT sensor network	Low

Table 1 – Comparative Analysis of IoT Platforms and AI Algorithms in PV Systems

A. Hardware Trade-offs:

- ❖ Low-Cost MCUs (Arduino): Best for simple voltage monitoring but limited in processing power [1].
- ❖ Efficient IoT (ESP32/NodeMCU): Optimal balance between energy efficiency (+10%) and real-time connectivity via MQTT [2, 3].
- ❖ Edge Computing (Raspberry Pi): Enables complex tasks like Image Processing (CNN) for fault detection and local SCADA systems [4, 7].

B. Communication & Scalability:

- ❖ LoRa Technology: Proven superior for remote, wide-area monitoring with 99% transmission reliability [5].
- ❖ Cloud Integration: Hybrid architectures (Edge + Cloud) reduce latency by ~18% [6].

C. Al Implementation:

- Algorithms like PID and ML regression significantly improve energy yield (up to 22%) in solar tracking and agrivoltaics [4, 8].
- ❖ Lightweight CNNs on the edge can detect shading and dust faults instantly, preventing power drops (e.g., 15.89W → 5.97W drop mitigation) [7].

CONCLUSION

loT integration transforms passive solar systems into active, intelligent microgrids capable of self-optimization and predictive maintenance, essential for decentralized energy transitions.

- ❖ Efficiency: IoT-based architectures provide a cost-effective pathway to significant energy yield improvements and reliability.
- ❖ Architecture: A hybrid approach combining Edge Intelligence (for immediate control) and Cloud Computing (for long-term analytics) offers the best performance.
- ❖ Impact: Adoption of predictive models (RNN, CNN) transforms maintenance from reactive to proactive, ensuring sustainability in decentralized grids.

FUTURE WORK

Advancing this field requires a focused evolution towards secure, ultra-low-power edge intelligence (TinyML) and standardized communication protocols for seamless interoperability.

- ❖ Cybersecurity: enhancing encryption for low-power IoT devices to protect grid data.
- ❖ TinyML: Developing ultra-lightweight models to run complex forecasting on basic microcontrollers (e.g., ESP32) without Cloud dependency.
- ❖ Standardization: Creating unified protocols for interoperability between different IoT vendors in solar microgrids.

REFERENCES

- Gusa, R. F., Sunanda, W., Dinata, I., & Handayani, T. P. (2018, March). Monitoring system for solar panel using smartphone based on microcontroller. In 2018 2nd international conference on green energy and applications (ICGEA) (pp. 79-82). IEEE. DOI: 10.1109/ICGEA.2018.8356281
- Cheddadi, Y., Cheddadi, H., Cheddadi, F., Errahimi, F., & Es-sbai, N. (2020). Design and implementation of an intelligent low-cost IoT solution for energy monitoring of photovoltaic stations. SN Applied Sciences, 2(7), 1165. DOI: 10.1007/s42452-020-2997-4
- 3. Patel, A., Swathika, O. G., Subramaniam, U., Babu, T. S., Tripathi, A., Nag, S., ... & Muhibbullah, M. (2022). A Practical Approach for Predicting Power in a Small-Scale Off-Grid Photovoltaic System using Machine Learning Algorithms. International Journal of Photoenergy, 2022(1), 9194537. DOI: 10.1155/2022/9194537
- Folgado, F. J., González, I., Calderón, M., Calderón, D., & Calderón, A. J. (2023). IoT Monitoring Solution for a Middle-Scale Grid Powered by PV Solar Tracker. Engineering Proceedings, 37(1), 40. DOI: <u>10.3390/ECP2023-14635</u>
- 5. Melo, G. C. G. D., Torres, I. C., Araújo, Í. B. Q. D., Brito, D. B., & Barboza, E. D. A. (2021). A low-cost IoT system for real-time monitoring of climatic variables and photovoltaic generation for smart grid application. Sensors, 21(9), 3293. DOI: 10.3390/s21093293
- 6. Fouguira, S., Ammar, E., Haji, M. E., & Benhra, J. (2025). Internet of Things and Predictive Artificial Intelligence for SmartComposting Process in the Context of Circular Economy. Engineering Proceedings, 97(1), 16. DOI: 10.3390/engproc2025097016
- 7. Özer, T., & Türkmen, Ö. (2024). An approach based on deep learning methods to detect the condition of solar panels in solar power plants. Computers and Electrical Engineering, 116, 109143. DOI: 10.1016/j.compeleceng.2024.109143
- 8. Chen, J., Paciolla, N., Mariani, S., & Corbari, C. (2024). Agrivoltaics: A Digital Twin to Learn the Effect of Solar Panel Coverage on Crop Growth. Engineering Proceedings, 82(1), 5. DOI: 10.3390/ecsa-11-20486