
 

 

Conference Proceedings Paper – Remote Sensing 

Assessment of biomass and carbon content in a Mediterranean 

Aleppo pine forest using ALS data 

Antonio Luis Montealegre 
1,
*, María Teresa Lamelas 

1,2†
, Juan de la Riva 

1,†
, Alberto García-

Martín 
1,2,† 

and Francisco Escribano 
2
 

1
 GEOFOREST-IUCA research group, Department of Geography, University of Zaragoza, Pedro 

Cerbuna 12, 50009, Zaragoza, Spain; E-Mail: tlamelas@unizar.es (M.T.L.); delariva@unizar.es 

(J.R.); algarcia@unizar.es (A.G.) 
2
 Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Ctra. de Huesca s/n, 

50090, Zaragoza, Spain; E-Mail: fescrib@unizar.es (F.E.)  

† 
These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: monteale@unizar.es;  

Tel.: +34-876-554-058; Fax: +34-976-761-506. 

Published: 22 June 2015 

 

Abstract: Tree biomass estimate is essential for carbon accounting, bioenergy feasibility 

studies and forest sustainable management. However, little research has been conducted 

focusing on the use of Airborne Laser Scanning (ALS) technology in Mediterranean 

Aleppo pine forest. Thus, the availability of ALS information provided by the Spanish 

National Plan for Aerial Orthophotography (PNOA) determined the main objective of this 

research. It is our aim to test the suitability of the low point density, discrete, multiple-

return, ALS data, to estimate and map the total biomass (TB) and its carbon content in 

Pinus halepensis Mill. forest. Accordingly, TB was calculated in 45 field plots, located 

north-eastern Spain, using allometric equations. This information was related through a 

multivariate linear regression analysis with a collection of independent variables extracted 

from the ALS data. The predictive model was validated using a leave-one-out cross-

validation (LOOCV) technique. Then, a regular grid with cell size 25 m x 25 m was 

generated in order to compute TB at stand level. Afterwards, biomass was transformed to 

carbon content by using a conversion factor. Maximum height, kurtosis and percentage of 

returns above 1 m were the ALS metrics included in the fitted model, which presented a R
2
 

value of 0.89.  
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1. Introduction 

In the last decades, operational collection of information on relevant characteristics of forest 

ecosystems by means of pure ground-based field inventories has been revolutionized by the 

development of remote sensing sensors [1]. Optical and radar remote sensing have been widely used to 

map forest structural attributes and biophysical parameters [2-5]. In this sense, Light Detection and 

Ranging (LiDAR) has emerged as a promising techniques in forest attribute estimation [1,6,7]. Most 

commercial LiDAR systems are small-footprint, discrete-return airborne lasers, also referred to as 

Airborne Laser Scanning (ALS). These systems are able to accurately characterize the three-

dimensional structure of the forest canopy due to its capacity to record the different reflections of each 

emitted pulse, corresponding to both, vegetation and terrain beneath it [6,8]. Accordingly, in order to 

generate a precise Digital Elevation Model (DEM), it is necessary to filter the ALS data and to 

interpolate the points classified as ground. These DEMs are needed to normalize the heights of the 

ALS point cloud with respect to the terrain heights [9-11].  

Nowadays, the most common methodology in forestry is the area-based one [12-14,1]. In this 

approach, attributes such as mean height, mean diameter, squared mean diameter, stand basal area, 

timber volume, stand density or biomass [15-24] are computed at stand level and statistical related to a 

pool of potential ALS-based predictor variables [14]. In this regard, correlations of moderate to high 

strength have been found between ALS metrics and the aforementioned dasometric attributes [1].  

Particularly, forest biomass mapping has gained interest in recent years due to the following three 

reasons: i) the relevant role of forests in the carbon cycle and in the balance of greenhouse gases 

emissions, ii) the assessment of the available resources for bioenergy production and iii) the 

sustainable management of forests [25]. The total biomass (TB) refers to the dry weight of the plant 

material from trees, including roots, stems, bark, branches and leaves from the ground to the apex [1]. 

Conventional methods used to estimate this variable are based on field measurements. However, these 

methods are limited by the high cost of such destructive sampling, necessary to create allometric 

models required to extrapolate the results. Alternatively, remote sensing has allowed forest biomass 

mapping in a wide range of spatial and temporal scales, reducing costs and fieldwork. Numerous 

studies have correlated the biomass and the spectral response of vegetation using passive optical 

sensors. However, the results have been typically affected by saturation problems when the biomass is 

greater than 100 tons/ha [25]. On the other hand, approaches using active sensors such as Synthetic 

Aperture Radar (SAR) have shown that they are more sensitive to higher levels of biomass and, more 

recently, the use of ALS technology is becoming a tool with great potential to estimate biomass [26,1]. 

This fact, together with the availability of ALS data captured for the entire Spanish territory under the 

National Plan for Aerial Orthophotography (PNOA), has determined the aim of this work, which is to 

evaluate the suitability of this information to estimate and map TB and carbon content in Pinus 

halepensis Mill. forest at stand level. Our objective implies developing a statistical model that 
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adequately relates the information provided by the ALS data with the one extracted directly from the 

field. 

2. Methods 

2.1. Study area  

The study area corresponds to monospecific stands of Pinus halepensis Mill. and it is located in the 

central Ebro valley (41° 50’ N, 0º 57’ W) (Fig. 2). This river crosses the Autonomous Region of 

Aragón, sited northeastern Spain. The forest under study is fragmented in stands of variable sizes and 

occupies 8266 ha. In some areas, Aleppo pine forest is interspersed with evergreen shrubs, dominated 

by Quercus coccifera L., Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball, and Thymnus 

vulgaris L. Part of the study area is located inside the Military Training Center (CENAD) “San 

Gregorio”, involving a direct risk of fire. According to the Third Spanish National Forest Inventory 

(NFI 3), pine forest is the most significant habitat in Autonomous Region of Aragón. In fact, it 

represents 49.88% of the forested area. In addition, Aleppo pines play an important role in the 

protection and restoration of forest as this tree species is practically the only one adapted to the adverse 

climatic and edaphic conditions of the study area. In this regard, it is important to notice that the study 

area is characterized by nutrient-poor, gypsiferous soils. In addition, this area presents a hilly 

topography, with elevations ranging from about 400 m to 750 m above sea level. Climate of the region 

is Mediterranean with continental features, i.e., irregular annual precipitation, cold winters and hot, dry 

summers [27].  

2.2. ALS data  

The ALS data were provided by the Spanish National Plan for Aerial Orthophotography (PNOA, 

http://www.ign.es/PNOA/vuelo_lidar.html). The information was captured in several surveys 

conducted between January and February 2011. A Leica ALS60 sensor was used. This is a small-

footprint, discrete return sensor. Data were delivered in 2 km x 2 km tiles of unclassified points in LAS 

binary file, format v. 1.2, containing x, y, z coordinates (UTM Zone 30 ETRS 1989), with up to four 

returns recorded per pulse. The flying height of the ALS mission was around 3,000 m.a.g.l. The sensor 

was operating in 1.064 μm wavelength, 0.22 mrad beam divergence and ±29 scan angle degrees. The 

resulting ALS point density for the study area was 1 point/m
2
 with a vertical accuracy higher than 0.20 

m.  

After eliminating the noise of the point cloud, it was necessary to perform a filtering process to 

identify ground returns. The classification algorithm implemented in the MCC software 2.1, developed 

by Evans and Hudak [28], was applied. This algorithm was selected given its good performance in 

hilly forest landscapes [9]. Points classified as ground were interpolated using the “Point-TIN-Raster” 

interpolation method [29] in ArcGIS 10.2 software (ESRI, Redlands, CA, USA) to create a DEM. This 

model, with 1 m spatial resolution, was used to normalize the heights of the point cloud. Then, using 

the “ClipData” and “CloudMetrics” commands implemented in FUSION LDV 3.30 software [30], 

several ALS point cloud metrics commonly used in vegetation structure modeling were calculated at 

each plot. A threshold of 1 m above the ground was applied in the selection of the points used in the 
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calculation in order to exclude from the metrics the returns belonging to bare-earth and understory 

[31]. 

2.3. Field data  

The fieldwork campaign was conducted between July and September 2014. The location of 45 

circular plots with 15 m radius was selected via a stratified random sampling, trying to obtain a 

representative sample of the variability of forest height and topographic complexity [31]. The selected 

sites were staked out in field using a Leica VIVA GS15 CS10 real-time kinematic Global Navigation 

Satellite System, achieving an average planimetric accuracy of 0.15 m. The total tree height (h) was 

measured using a Vertex instrument for precision height (Haglöf Sweden®). In addition, the tree 

diameter at breast height (dbh), considering the standard height of 1.3 m used in Europe, was measured 

using a calliper Haglöf Mantax Precision Blue (Haglöf Sweden®). In total 2,063 trees were 

inventoried (only trees greater than 7.5 cm dbh). The different biomass fractions at each plot was 

calculated using the Pinus halepensis Mill allometric models reported by Ruiz-Peinado et al. [32] 

(equations 1, 2, 3, 4 and 5): 

Ws = 0.0139 · dbh
2
 · h (1)  

Wb7 = [3.926 · (dbh -27.5)] · Z; If dbh ≤ 27.5 cm then Z = 0; If dbh > 27.5 cm then Z = 1 (2)  

Wb2-7 = 4.257 + 0.00506 · dbh
2
 · h – 0.0722· dbh · h (3)  

Wb2+n = 6.197 + 0.00932 · dbh
2
 · h – 0.0686 · dbh · h (4)  

Wr = 0.0785 · dbh
2
 (5)  

Where Ws is the biomass weight of the stem fraction (kg), Wb7 is the biomass weight of the thick 

branch fraction (diameter larger than 7 cm) (kg), Wb2-7 is the biomass weight of medium branch 

fraction (diameter between 2 and 7 cm) (kg), Wb2+n is the biomass weight of thin branch fraction 

(diameter smaller than 2 cm) with needles (kg), and Wr is the biomass weight of the belowground 

fraction (kg).  

The results of these equations were aggregated to calculate the TB in kilograms of each tree in the 

field plot, in order to extrapolate the TB values from sample plots to per hectare biomass value (kg of 

dry biomass per ha).  

2.4. Predictive model for estimating the TB 

Following Means et al. [12], Næsset [13], Gonzalez-Ferreiro et al. [11] and García et al. [10], a 

multivariate linear regression approach was adopted in order to develop a model able to estimate the 

TB. The statistical analysis was performed in the R environment (http://www.r-project.org/). Given the 

large number of potential ALS-derived metrics, the Spearman’s rank correlation coefficient (Rho) was 

previously applied in order to select those independent variables with the strongest correlation 

coefficient with TB [22]. Then, the selected variables were included in a stepwise regression, trying to 

develop a parsimonious model in order to avoid over-fitting [33,34]. Predictor variables with a 
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significance value of partial F statistic greater than 0.05 were removed from the model [31]. Besides, 

the fitted model was selected in compliance with the statistical assumptions of linearity, normality of 

the residuals, homoscedasticity, and independence or no autocorrelation [10].  

A leave-one-out cross-validation (LOOCV) technique was applied with the purpose of performing 

an unbiased assessment of the predictive capacity of the model [14]. The model goodness-of-fit was 

assessed comparing the adjusted coefficient of determination (R
2
), the root-mean-square error (RMSE) 

and the mean of the residuals obtained from LOOCV technique [35]. The final model was obtained by 

averaging the model coefficients computed at each step of the cross-validation performed [14].   

2.5. Mapping TB and carbon content 

The pixel size selected to compute the ALS-derived metrics and to map TB was 25 m x 25 m, 

representing an area of 625 m
2
, similar to the field plot dimensions (706.86 m

2
). Metrics involved in 

the equation of the TB model were obtained using the “GridMetrics” and “CSV2Grid” commands 

implemented in FUSION LDV 3.30 [30]. Then, using map algebra in ArcGIS 10.2 (ESRI, Redlands, 

CA, USA), model coefficients were applied to the raster layers to achieve a TB map at stand level. 

Finally, TB values were converted to carbon content using a conversion factor of 0.499 following 

Montero  et al. [36].  

3. Results and Discussion  

A summary of the variables estimated in the field is presented in Table 1. Terrain slope in the plots 

averaged 10.7° and ranged from 0.7 to 25.7°. As can be observed, structural variables related to 

Aleppo pine forest show a remarkable variability. Inventoried trees range from smaller trees (heights 

of 3.7 m and stem diameters of 8.6 cm) to bigger ones (heights of 11.3 m and stem diameter of 28.3 

cm). This implies a subsequent variability in biomass estimations from these variables, as can be seen 

in standard deviation values of aboveground biomass (AGB), Wr and TB.  

Table 1. Summary of the field plot data (n=45). 

 Min Max Range Mean Standard deviation 

Slope (degrees) 0.7 25.7 25.0 10.7 7.2 

Tree height (m) 3.7 11.3 7.6 7.1 2.0 
dbh (cm) 8.6 28.3 19.7 15.2 4.7 

AGB: Aboveground biomass (kg/ha) 989.2 112,076.4 111,087.2 37,462.6 27,879.5 

Wr: Belowground biomass (kg/ha) 423.4 32,701.5 32,278.2 13,237.4 7,435.3 
TB: Total biomass (kg/ha) 1,412.6 144,777.9 143,365.3 50,700.0 35,123.8 

Carbon content (kg/ha) 704.9 72,244.2 71,539.3 25,299.3 17,526.8 

 

Table 2 shows the Spearman correlation coefficients obtained for each of the ALS-derived metrics. 

TB is strongly correlated to the upper ALS height percentiles, particularly with the P25 to P60 (0.95 in 

all of them), being positive in all cases. The greater the height of the trees within the plot the greater 

the TB value as the stems and branches are more developed. The same interpretation presents the 

canopy height metrics, such maximum (0.88), mean (0.95) and mode elevation (0.92). In the case of 

metrics related to the variability of canopy height, the skewness of the height distribution of the 

returns, which describes the degree of concentration of heights around high or low values, i.e., 
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provides some indication of how asymmetric the point distribution is, presents an inverse Spearman’s 

correlation coefficient (-0.83). On the contrary, the standard deviation and variance, both with Rho 

values of 0.71, show the dispersion of point height values data around the mean height. Thus, the 

higher the TB the more dispersion of the data concerning the average height value because the trees are 

bigger. Finally, metrics related to canopy density correlate strongly with TB, particularly the 

percentage of first returns above mean height (0.88) and the ratios of all returns above mean and 1 m 

(0.88 and 0.84, respectively). The interpretation of such metrics is similar, as ratios express the 

proportion of returns belonging either to the canopy surface (first returns) or the whole canopy (all 

returns). 

Table 2. Correlation coefficients (Rho) describing the strength of linear relationships between plot-

derived TB and ALS-derived metrics. 
**

and 
*
 denote significance (P-value < 0.01 and 0.05, 

respectively); 
ns

 denote not significant (P-value > 0.05). 

Variable Rho Variable Rho 

Canopy height percentiles metrics Canopy height variability metrics 

P01 0.43
**

 Elev. standard deviation (SD) 0.71
**

 

P05 0.67
**

 Elev. variance 0.71
**

 

P10 0.85
**

 Elev. coefficient of variation (CV) -0.37
**

 

P20 0.94
**

 Elev. interquartile range (IQ) 0.54
**

 

P25 0.95
**

 Elev. skewness -0.83
**

 

P30 0.95
**

 Elev. kurtosis 0.50
**

 

P40 0.95
**

 Canopy density metrics 

P50 0.95
**

 % first returns above 1 m 0.83
**

 

P60 0.95
**

 % all returns above 1 m 0.65
**

 

P70 0.94
**

 % first returns above mean height 0.88
**

 

P75 0.94
**

 % first returns above mode height 0.40
**

 

P80 0.94
**

 % all returns above mean height 0.79
**

 

P90 0.93
**

 % all returns above mode height 0.18
ns

 

P95 0.90
**

 (All returns above 1 m) / (Total first returns) ∙ 100 0.84
**

 
P99 0.89

**
 

Canopy height metrics 
(All returns above mean) / (Total first returns) ∙ 100 0.88

**
 

Elev. minimum 0.10
ns

 

Elev. maximum 0.88
**

 
 (All returns above mode) / (Total first returns) ∙ 100 0.40

**
 

Elev. mean 0.95
**

 

Elev. mode 0.92
**

   

 

Table 3 shows the summary of the selected model for estimating TB that includes three types of 

ALS metrics: i) the maximum elevation, ii) the kurtosis of the height distribution of the returns, and iii) 

the percentage of all returns above 1 m. As can be seen in Figure 1 and Table 2, the relationship 

between TB and these variables is direct. The higher the value of these metrics, the larger the amount 

of points returning from trees, implying an increase in timber volume per hectare and in plant material.  

As shown in Table 3, the model presented a R
2
 of 0.89, a RMSE of 11,327.69 and a RMSEcv of 

11,418.11 kg/ha. The bias value of 0.12 evidences a slightly model overestimation.  

 

 



 7 

 

 

Table 3. Model summary for estimating TB. 

Dependent 

variable 
Predictive model 

Fitting phase  Cross-validation 

R
2
 RMSE Bias  R

2
 RMSEcv Bias 

TB (kg/ha) -70277.86+8902.59∙Elev. maximum 

+8232.54∙Elev. kurtosis + 563.10∙% all 

returns above 1 m 

0.89 11,327.69 0.00  0.89 11,418.11 0.12 

Figure 1. Metrics associated to the vertical distribution of ALS returns in three selected 

field plots representative of the study area: (a) Low height, (b) medium height and (c) great 

height Aleppo pines.  

 

 

Figure 2 shows the TB and carbon content mapping after implementation of the prediction model in 

a GIS environment.  

The results of this study indicate that LiDAR-PNOA data can be used to estimate the TB in 

monospecific Pinus halepensis Mill. forest stands. The good fit of the model obtained reveals, not only 

the suitability of the methodology, but also the correlation between the statistics obtained from ALS 

point cloud and the h and dbh measured in the field. Although the RMSE above 11,000 kg/ha may 

seem high, it should be noted that the inventory data covered a wide range of values as can be 

observed in Table 1.  
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Figure 2. Map of the TB and carbon content in two selected areas of the study site. (a) 

Heterogeneous Aleppo pine forest with lower stand density. (b) Includes two distinct 

homogeneous areas, differentiated by stand density and canopy height. 

 

 

It is important to notice that both, the R
2
 and RMSE value match those obtained by other authors, 

such as González-Ferreiro et al. [11]. In contrast to other studies, such as García et al. [25], it was not 

necessary to perform a logarithmic transformation of the original variables in order to achieve a better 

fit of the model or to meet the assumptions of the linear regression model. 

ALS metrics included in the model behave logically as can be observed in Figure 1. In this regard, it 

is common that prediction models include ALS-derived metrics directly related to the canopy height, 

variables characterizing the variability, dispersion and shape of the height distribution of returns, as is 

the case of kurtosis, and variables related to the canopy density and tree cover, as the percentage of all 

returns above 1 m. 

On the other hand, the no contemporaneity of the ALS data acquisition and the field campaign was 

considered irrelevant, as no significant changes in forest structure occurred in that time lapse. 
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Furthermore, the low point density of the data did not affect the existence of high and significant 

correlations between TB derived from field data and ALS-derived metrics.  

In the future, it would be advisable to analyze the possibility of estimating forest biomass 

disaggregated in different fractions (stem, branches, leaves and roots) in order to model the carbon 

storage in detail and improve forest stand management. Besides, it would be desirable to study the 

usefulness of the PNOA-LiDAR data to characterize other forest species in large areas, as it could 

increase the accuracy of the results and reduce the costs with respect to traditional inventories.  

4. Conclusions  

Active remote sensing with ALS technology brings a new perspective to forest inventories 

providing 3-D information of the vegetation structure, as well as an improvement in the accuracy of 

the results and a reduction in costs. In this regard, the benefit of estimating the TB is even bigger, as 

with this methodology systematic sampling destructive procedures are not necessary. This work has 

proved the usefulness to estimate TB and carbon content in monospecific Aleppo pine stands 

representative of the continental Mediterranean climate. In the light of the results obtained, the adopted 

methodology was suitable. Our results match those achieved in other types of forests. Considering that 

PNOA project will presumably produce more LiDAR products in the next years, it would be desirable 

to evaluate the adequacy of the generated model to future captures of data and to develop new models 

of biomass components as well as in other types of Mediterranean forests.  
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