

Top-down identification of mixed vs. residential use in urban areas:

Evaluation of remotely sensed nighttime lights for a case study in Cuenca City, Ecuador

Christoph Aubrecht, José Antonio León Torres

1st International Electronic Conference on Remote Sensing 22 June - 5 July 2015

Introduction - Context

- Issues of urban development are increasingly being addressed at the global scale
- It becomes more and more evident that spatial data is playing a crucial role for consistent cross-regional analyses and unbiased evaluation of locally implemented actions
- Remote sensing data in particular provide a rich and globally consistent source for analyses at multiple levels
- At global scale different aspects have to be considered than for local-level spatial analyses, including consistency, scalability, retraceability

Country Disaster Risk Profiles Project

- The World Bank's CDRP initiative is currently implemented at continental scale for Central America with the clear aim of further extension to other regions
 - Global applicability and easy transferability are considered crucial for the model setup
- The overall objective of CDRP is set at disaster risk and loss estimation, with one of the key elements being a spatially disaggregated property stock exposure model
 - Spatial linking of tabular property stock information, compiled at the level of **inventory regions** (such as PAGER-STR)
 - \rightarrow Spatial identification of those inventory regions required

Inventory region identification

- CDRP inventory regions refer to a primary urban-rural distinction and within that classification an additional separation of residential and non-residential occupancy
 - Urban-rural classification is done in built-up-adjusted manner (not topic of this presented study)
- Focus of this study:
 - Top-down identification of non-residential as opposed to residential areas within urban agglomerations
 - Remotely sensed nighttime lights (ISA Impervious Surface Area) data from the DMSP-OLS sensor are used as proxy to identify areas of peak human activity, often associated with a high likelihood of commercial and/or industrial presence
 - Case study: Cuenca City, Ecuador

Top-down vs. ground reference data

Identifying 'non-residential/mixed'

- Working on a 1 km grid level (frequently used for global models) the spatial identification and distinction of unique inventory regions is often not unambiguously possible at the grid cell level → mixed pixel issue
 - Large urban residential areas and certain dedicated industrial zones are still often built in rather compact manner and can thus indeed cover entire grid cells
 - Commercial areas, however, are commonly intertwined with residences forming wider areas of mixed use
- Top-down identification of urban non-residential areas
 - Reasonable to assume a certain share of residential occupancy throughout and consider grid cells that also include a nonresidential share as areas of mixed use

Iterative binary ISA classification

• Cadaster shows a 75-25 distribution ratio of residential vs. mixed areas (taken as reference for top-down identification)

ID	ISA Distribution				Building Distribution	
	Min	Threshold	Max	Percentile	Residential Use	Mixed Use
1	5.7	15	77.8	13%	32.00%	68.00%
2	5.7	25	77.8	27%	52.00%	48.00%
3	5.7	35	77.8	41%	70.00%	30.00%
4	5.7	42	77.8	50%	74.00%	26.00%
5	5.7	51	77.8	63%	96.00%	4.00%

Iterative binary ISA classification

• ID 4 shows best match of top-down and ground reference

Discussion

- Top-down identification of median ISA value as cutoff point confirms the prior non-evaluated assumption implemented in the Central American CDRP model
 - Without ground reference data (as available for this presented test case study), the use of the median value seemed most appropriate as it introduces the **least possible subjectivity** and merely separates a certain data set in high and low according to its histogram without additionally induced statistical skew.
- Cadastral data furthermore enables evaluation of the degree of spatial overlap as a measure of model output accuracy
 - 82.8% of the total non-residential building stock of Cuenca City (3.6 of 4.3 million km²) is captured within the selected top-down-derived binary mixed use mask

Outlook to future work

- CDRP has been implemented for all of Central America → further test studies can be carried out to increase the sample size of the model evaluation and test the approach in different regional settings
 - While in Central America no big deviations are expected with regard to the model applicability, it will be interesting to see testing results when extending to the Caribbean and across
- DMSP-OLS-based ISA data seems to work well as input data source for the residential-mixed identification model → still significant further accuracy improvements are expected when referring to more recent VIIRS data (Visible Infrared Imaging Radiometer Suite)
 - Higher spatial and radiometric resolution

Thanks for your interest!

Contact: Christoph Aubrecht (The World Bank, GSURR, caubrecht@worldbank.org)

1st International Electronic Conference on Remote Sensing 22 June - 5 July 2015

Disclaimer | Work-in-progress

- The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of its Executive Directors or the governments they represent.
- The presented examples are taken from a case study that is workin-progress, all given estimations and results are preliminary
- These slides should be treated confidentially and are not to be shared without prior agreement of the WB-GSURR CDRP study team (contact <u>caubrecht@worldbank.org</u>)

