The 5th International Electronic **Conference on Agronomy**

15-18 December 2025 | Online

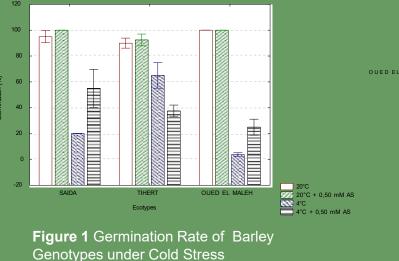
Evaluation of Cold Tolerance in Local Barley (*Hordeum vulgare* L.) Genotypes and the Role of Salicylic Acid in their Resilience

Lahouaria Rahma LABTERE¹, Adel Amar AMOURI ² and Moulay BELKHODJA³

- ¹ Biology department, Plant Molecular Physiology Laboratory, University of Oran 1, El M'Naouer, Oran 31000, Algeria.
- ²Biology department, Plant Molecular Physiology Laboratory, University of Oran 1, El M'Naouer, Oran 31000, Algeria.
- ³Biology department, Plant Molecular Physiology Laboratory, University of Oran 1, El M'Naouer Oran 31000, Algeria.

INTRODUCTION & AIM

Barley (Hordeum vulgare L.) is a major cereal crop in Algeria's high plateau regions, essential for human and animal food security. However, its productivity is by low-temperature severely limited stress and recurrent frosts, leading to cellular damage, metabolic disturbances and significant yield losses [1]. Salicylic acid (SA), an essential plant signaling molecule, is known to enhance cold tolerance by regulating stress genes activating antioxidant defense systems and stabilizing cellular functions [2]. This study aims to assess the cold tolerance of local barley genotypes and the effect of SA on their resilience, seeking to identify the most performing genotypes for varietal improvement.


METHOD

This work, conducted at the Plant Ecophysiology Laboratory of Oran1 University, evaluated the response of three barley genotypes Saida (183), **Tihert** (ACSAD1704), and Oued El Maleh (ACSAD1737) to cold stress, with and without salicylic acid (SA). Seeds were surface-disinfected, placed in Petri dishes, germinated in the dark at 4 °C, with daily watering of 4 ml of the specific solutions for 10 days (Table1). physiological Morphological parameters and measured and statistically analyzed using Statistica software. **Table 1.** Germination Conditions of Barley Genotypes

Treatment	Solution	Duration
Control (20 °C)	Distilled Water	- 10 days
	Distilled Water +0,5mM SA	
Cold Stress (4 °C)	Distilled Water	
	Distilled Water+0,5 mM SA	

RESULTS & DISCUSSION

This study revealed clear genetic diversity in genotype tolerance and physiological responses to cold stress. In the absence of SA, the Tihert genotype achieved a germination rate of 65%, compared with 20% for Saida and 5% for **Oued El Maleh**. The application of 0.5 mM SA markedly enhanced post-germination growth and resilience in the sensitive genotypes, increasing germination rates to 55% for **Saida** and 25% for **Oued El** Maleh, while its effect remained limited in Tihert, which already exhibited a high level of natural tolerance (Figure 1). Hierarchical clustering analysis based on Euclidean distances confirmed **Tihert** as the most cold-2).The (Figure tolerant genotype observed improvement in the sensitive genotypes (Saida and Oued El Maleh) suggests that SA may activate antioxidant defense systems and membrane-stabilizing mechanisms, as reported by [3].

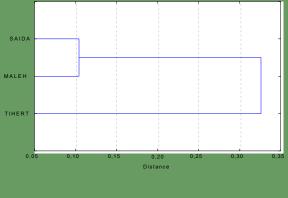


Figure 2 Hierarchical Classification of Barley Genotypes under Cold Stress

CONCLUSION

These results show that local genetic diversity and salicylic acid can enhance cold tolerance, with Tihert being a valuable genotype for barley breeding in Algeria.

FUTURE WORK / REFERENCES

Cross-tolerance transfers stress-resistance genes from robust genotypes to produce hardier, cold-tolerant barley.

- 1 Yu M., Luobu Z., Zhuoga D., Wei X., Tang Y. « Physiological and broadly targeted metabolomic analyses of barley (Hordeum vulgare L.) in response to low-temperature stress. » BMC Genomics*, 26:618, 2025.
- 2 Mutlu S., Karadağoğlu Ö., Atıcı Ö., Taşğın E., Nalbantoğlu B. « Time-dependent effect of salicylic acid on alleviating cold damage in two barley cultivars differing in cold tolerance. » Turkish Journal of Botany*, vol. 37, no. 2, 2013, pp. 343–349.
- 3 Mutlu, S., Atıcı, Ö., Nalbantoğlu, B., & Mete, E. (2016). Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Frontiers in Life Science, 9(2), 99–109. DOI: 10.1080/21553769.2015.1115430