The 5th International Electronic Conference on Agronomy

15-18 December 2025 | Online

Chitosan-based nanocarriers loaded with natural plant extracts for controlling fusarium wilt of banana: in vitro efficacy and greenhouse evaluation

Eva Sánchez-Hernández¹, Carmen Gómez-Lama Cabanás², Antonio Valverde-Corredor², Carlos Casanova-Muñoz², Alberto Santiago-Aliste³, Jesús Martín-Gil¹, Pablo Martín-Ramos^{1,*}

¹ Dept. of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Spain; ² Sustainable Agriculture Institute (IAS-CSIC), Córdoba, Spain; ³ Dept. of Construction and Agronomy, E.P.S. Zamora, University of Salamanca, Spain

INTRODUCTION & AIM

The threat: Fusarium oxysporum f. sp. cubense (Foc), particularly Tropical Race 4 (TR4), is a global threat to banana production. Current commercial varieties lack resistance.

A possible solution: nanoencapsulation of natural extracts using chitosan oligosaccharides (COS) to improve stability, bioavailability, and targeted delivery.

Objective: To evaluate *Rubia tinctorum* and *Uncaria tomentosa* nanocarriers (NCs) against Foc TR4/STR4 *in vitro* and in greenhouse trials with cv. Dwarf Cavendish.

METHODOLOGY

Nanocarriers:

- **NC-A**: COS-g-C₃N₄ loaded with *Rubia tinctorum* (14.3% extract). g-C₃N₄ = graphitic carbon nitride.^[1,2]
- **NC-B**: COS-HAp-g-C₃N₄ loaded with *Uncaria tomentosa* (22.2% extract). HAp = hydroxyapatite.^[3,4]

In vitro assays: EC_{50} and EC_{90} determination + time-kill kinetics against Foc STR4 and TR4.

Greenhouse trial: Dwarf Cavendish plantlets inoculated with Foc STR4; root dip application. Assessed for 79 days for disease severity (SAUDPC) and physiology.

RESULTS & DISCUSSION

A. In vitro potency & kinetics

Both NCs showed concentration-dependent inhibition (Table 1), but *R. tinctorum*-loaded NCs demonstrated superior kinetics.

Table 1. Effective concentrations (EC $_{50}$ and EC $_{90}$) in µg/mL of NC treatments against Foc STR4 and TR4. Values in parentheses indicate equivalent concentration of encapsulated plant extract.

Nanocarrier	Effective	F. oxysporum f. sp. cubense		
treatment	concentrations	STR4	TR4	
NC-A	EC ₅₀	620.5 (88.7)	328.2 (46.9)	
(R. tinctorum)	EC ₉₀	953.8 (136.4)	960.4 (137.3)	
NC-B	EC ₅₀	610.3 (135.5)	291.7 (64.8)	
(U. tomentosa)	EC ₉₀	956.3 (212.3)	938.2 (208.3)	

Mode of action:

- NC-A (*R. tinctorum*): Fungicidal. Achieved complete kill (0 CFU) within 24 hours (Table 2).
- NC-B (*U. tomentosa*): Fungistatic. Significant suppression, but residual colonies persisted at 72h.

Table 2. Time-kill kinetics of nanocarrier treatments (3000 μg/mL) against Foc STR4 and TR4.

Treatment	T0 (h)	T24 (h)	T48 (h)	T72 (h)
Control (Foc)	2.00 ± 0.04 a	3.84 ± 0.03 a	6.66 ± 0.05 a	7.38 ± 0.03 a
NC-A (R. tinctorum)	1.96 ± 0.03 a	0.17 ± 0.11 ^c	0.00 ± 0.00 c	0.00 ± 0.00 c
NC-B (<i>U. tomentosa</i>)	2.01 ± 0.02 a	1.15 ± 0.11 b	0.67 ± 0.28 b	0.38 ± 0.17 b

RESULTS & DISCUSSION (cont.)

B. Greenhouse efficacy (disease suppression)

In planta, the rapid fungicidal action of *R. tinctorium*-loaded NCs translated to significant disease control, whereas *U. tomentosa-*loaded NCs did not (Table 3, Figure 1).

Table 3. Standardized AUDPC (SAUDPC) at 79 days post-inoculation for banana cv. Dwarf Cavendish plants treated with NCs and challenged with Foc.

Treatment	SAUDPC	Efficacy (%)	Statistical grouping
Healthy control	0.00		
Foc control	2.61		а
NC-A (R. tinctorum)	1.70	34.9	b
NC-B (<i>U. tomentosa</i>)	2.41	7.8	ab

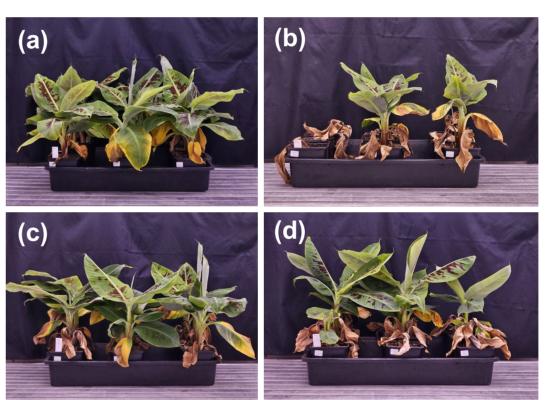


Figure 1. Visual comparison at 79 DPI. (a) Healthy control, (b) Foc control, (c) NC-A (*R. tinctorum*), (d) NC-B (*U. tomentosa*). The NC treatments show reduced wilting and a healthier canopy compared to the inoculated control

C. Physiological impact & defense elicitation

Treatment elicited strong defense responses and promoted growth despite pathogen pressure.

- Defense markers: flavonoid content increased by 95% in NC-A-treated plants.
- **Biomass**: NC-A treatment significantly increased fresh weight by 16.4%.
- Stress adaptation: NC-A-treated plants showed reduced stomatal conductance (g_{sw}), indicating a waterconservation strategy during infection

CONCLUSIONS

- **Efficacy**: Rubia tinctorum-loaded nanocarriers provided 34.9% disease reduction in greenhouse conditions, significantly superior to the control.
- Mechanism: Rubia tinctorum-loaded NCs act as a fungicide (rapid kill <24h) and a defense elicitor (doubling flavonoid content).
- Application: This nano-formulation represents a promising component for integrated pest management (IPM) strategies against Fusarium Wilt.

REFERENCES

- 1. Langa-Lomba *et al.* (2021) *Plants*, 10(9), 1527. https://doi.org/10.3390/plants10081527
- 2. Santiago-Aliste et al. (2022). Materials, 15(24), 8981. https://doi.org/10.3390/ma15248981
- 3. Sánchez-Hernández *et al.* (2022). *Horticulturae*, 8(8), 672. https://doi.org/10.3390/horticulturae8080672
- 4. Santiago-Aliste *et al.* (2023). *Agronomy*, 13(9), 2189. https://doi.org/10.3390/agronomy13092189

