IECAG 2025 Conference

The 5th International Electronic Conference on Agronomy

15-18 December 2025 | Online

Osmoprotective mechanisms of exogenous proline in salt-stressed *Physalis* ixocarpa: integrated morphophysiological, spectroscopic, and metabolomic analysis

Francisco Gregório Do-Nascimento-Neto^{1,2}, Eva Sánchez-Hernández², Alone Lima Brito¹, Marilza Neves do Nascimento¹, Norlan Miguel Ruíz-Potosme³, Jesús Martín-Gil², Pablo Martín-Ramos^{2,*}

¹ Dept. of Biological Sciences, State University of Feira de Santana, Brazil; ² Dept. of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Spain; ³ Dept. of Cartographic, Geodetic and Photogrammetric Engineering, EiFAB, University of Valladolid, Spain.

INTRODUCTION & AIM

The problem: soil salinization affects >800 million hectares globally, threatening crops like Physalis ixocarpa (Mexican husk tomato) in semi-arid regions.

The gap: while proline is a known osmolyte, its specific metabolic trade-offs and molecular mechanisms in P. ixocarpa remain unexplored.

Objective: to evaluate exogenous proline (seed priming and in vitro) as a salt stress mitigator using morphophysiological, ATR-FTIR, and GC-MS approaches.

METHODOLOGY

Screening: germination tests (0–200 mM NaCl) identified 75 mM NaCl as the threshold for moderate stress.

Treatments: control: no stress; stress: 75 mM NaCl; proline: 75 mM NaCI + proline (4, 6, 8, 10 mM).

Application: seed imbibition (30 min) for germination; media supplementation for *in vitro* culture.

Analyses:

- Morphophysiology: germination rate, biomass, chlorophyll (a/b).
- Spectroscopy: ATR-FTIR on roots, stems, leaves.
- Metabolomics: GC-MS of methanolic extracts.

RESULTS & DISCUSSION

A. Germination & growth restoration

Pretreatment with 8 mM proline was optimal, restoring germination to 78% (comparable to non-stressed levels) and recovering fresh weight (Table 1). Higher doses (10 mM) were counterproductive.

Table 1. Effect of proline pretreatment on germination (under 75 mm NaCl)

Treatment	Germination rate (%)	Fresh weight (g)
Control (no salt)	98.0 ± 1.4 ^a	1.354 ± 0.026 a
75 mM NaCl	62.0 ± 0.8 ^d	0.642 ± 0.022 °
NaCl + 4 mM proline	70.7 ± 2.5 °	0.758 ± 0.015 b
NaCl + 6 mM proline	76.7 ± 0.9 b	0.799 ± 0.019 b
NaCl + 8 mM proline	78.0 ± 0.8 ^b	1.322 ± 0.022 a
NaCl + 10 mM proline	70.7 ± 2.1 °	0.664 ± 0.008 °

agronomy

an Open Access Journal by MDPI

Exogenous Proline Application Mitigates Salt Stress in *Physalis ixocarpa* Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence

Agronomy 2025, Volume 15, Issue 9, 2119

RESULTS & DISCUSSION (cont.)

B. The "resource reallocation" strategy

Proline-treated plants exhibited a strategic trade-off: they sacrificed root growth to protect the photosynthetic apparatus (Figure 1).

- Root length: reduced from 9.7 cm (control) to 5.1 cm (proline).
- Chlorophyll: increased significantly, exceeding even the non-stressed control.

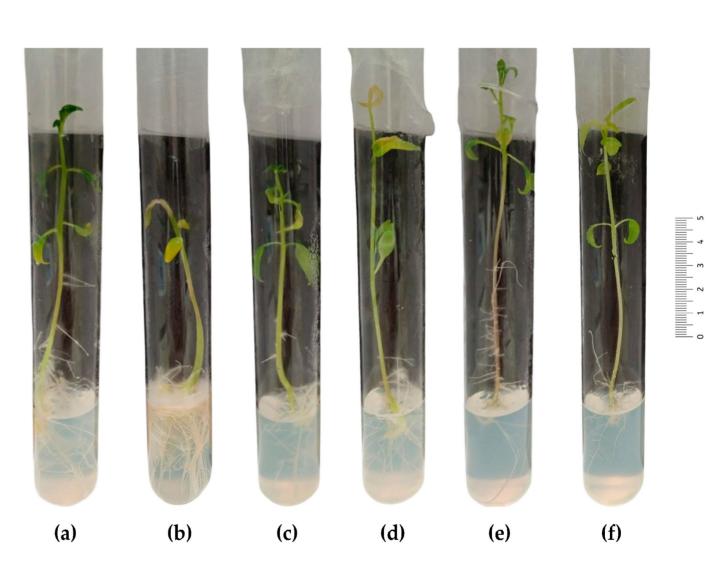


Figure 1. Visual comparison of seedlings. Physalis ixocarpa plants after 30 days of *in vitro* culture under different treatments: (a) control (no salt), (b) 75 mM NaCl, and 75 mM NaCl supplemented with (c) 4, (d) 6, (e) 8, or (f) 10 mM proline.

C. Metabolic & spectral reorganization

FTIR spectroscopy: Proline treatment restored polysaccharide bands (O-H stretching at 3400-3200 cm⁻¹) disrupted by salt, indicating cell wall stabilization.

GC-MS profiling:

- Salt stress: shifted dominant carbohydrate from ethyl α-D-glucopyranoside to ethyl β -D-riboside.
- **Proline restoration:** reversed this shift back to α -Dglucopyranoside (energy storage) and generated active pyrrolidine derivatives.
- Mechanism: phenolic antioxidants (e.g., disappeared under stress and were *not* restored by proline, suggesting proline acts via preemptive metabolic stabilization rather than antioxidant synthesis.

CONCLUSION

- Optimal dose: 8 mm proline is the most effective concentration for seed priming.
- Mechanism: proline operates through a "resource photosynthetic reallocation" strategy, prioritizing maintenance over root elongation.
- Metabolism: protection is achieved by stabilizing carbohydrate profiles and generating specific nitrogenous metabolites, reducing the need for costly phenolic antioxidant synthesis.