IECAG
2025
Conference

The 5th International Electronic Conference on Agronomy

15-18 December 2025 | Online

Assessment of Soil Electrical Conductivity and Yield Responses of Maize Hybrids under different plant densities

Ronald Kuunya^{1,2*}, Magdoline Mustafa Ahmed Osman^{1,2,3}, Brian Ssemugenze^{1,2}, Costa Gumisiriya^{2,4,5}, András Tamás¹, Péter Ragán¹

¹Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary.

²Kerpely Kálmán Doctoral School, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary.

³Environment, Natural Resources and Desertification Research Institute, National Center for Research, Khartoum, Sudan.

⁴Institute of Agrochemistry and Soil Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen Hungary. ⁵Department of Crop and Animal Production, Faculty of Agriculture and Environmental Sciences, Mountains of the Moon University, P.O. Box 837, Fort Portal City, Uganda.

Irrigation

Source

Plant

Density


Plant density Hybrid Fertiliser

INTRODUCTION & AIM

Maize hybrids differ widely in their nutrient uptake efficiency, influencing growth and yield outcomes under diverse field conditions. Plant density plays a critical role in determining nutrient availability per plant, thereby affecting key developmental stages such as germination, tasselling, and kernel filling. Soil Electrical Conductivity (EC) has emerged as a useful indicator of soil chemical and physical properties linked to nutrient dynamics, yet its relationship with maize performance under varying densities remains insufficiently explored.

This study aimed to evaluate how soil EC interacts with hybrid characteristics and plant density to influence yield, and to identify optimal hybrid-density combinations for enhanced productivity and resource-use efficiency.

METHODS

Location and field set-up of the experiment, conducted under strip tillage on non-irrigated chernozem soil, featuring three maize hybrids

workflow of two plant densities, fertiliser application rate of N + PK, monthly soil EC measurements, and grain yield assessment.

Field management and measurement

Statistical analysis using *SPSS Software* (IBM v20), with significance evaluation at $p \le 0.05$.

1	0	0-		11											
2	Non-irrigated	Strip tillag	e 60k	1	80 kg N/ha +PK	14133,167	11,09382	Correct ed Model Plantde nsity	Depende nt	Type III Sum of	df	Mean Square	F	Sig	
3	Non-irrigated	Strip tillag	e 60k	2	80 kg N/ha +PK	10360,833	11,634741		Variable	Squares		·			
4	Non-irrigated	Strip tillag	e 60k	3	80 kg N/ha +PK	,	10,616894		Yield	2,109ª	1	2,109	1,97 1	,1 ⁷	
5	Non-irrigated	Strip tillag	e 80k	3	80 kg N/ha +PK	2781,5	11,217856		(t/ha)						
6	Non-irrigated	Strip tillag	e 80k	1	80 kg N/ha +PK	2779,5	9,6951981		EC	2119292 9,120 ^b	1	2119292 9,120	1,34 5	,2! 9	
7	Non-irrigated	Strip tillag	e 80k	2	80 kg N/ha +PK	2777	12,225979		Yield				1,97	,1 ⁻	
8	Non-irrigated	Strip tillag	e 60k	1	80 kg N/ha +PK	13023,833	11,462082		(t/ha)	2,109	1	2,109	1	4	
9	Non-irrigated	Strip tillag	e 60k	2	80 kg N/ha +PK	13709,667	11,116665		EC	2119292 9,120	1	2119292 9,120	1,34 5	,2! 9	
10	Non-irrigated	Strip tillag	e 60k	3	80 kg N/ha +PK	13708	10,082197		ared = ,08	3,120 32 (Adjuste	d R Square	•			
11	Non-irrigated	Strip tillag	e 80k	2	80 kg N/ha +PK	13874,667			ared = ,058 (Adjusted R Squared = ,015)						
Source		F	Sig.	R² (Adj)				Interpretation							
Plant Density		1.971	0.174	0.082 (0.040)				F = 1.971, p = $0.174 > 0.05 \rightarrow$ Not statistically significant. Plant density explains ~8.2% of yield variation (adjusted: 4%).							

RESULTS & DISCUSSION

Tests of Between-Subjects Effects

Interpretation

F = 1.345, $p = 0.259 > 0.05 \rightarrow Not statistically significant. Plant$

density explains ~5.8% of EC variation (adjusted: 1.5%).

No significant correlations among hybrid, EC, plant density, and yield.

R² (Adj)

0.058 (0.015)

Sig.

1.345 0.259

- Neither EC nor plant density served as reliable predictors of yield under the conditions of this study.
- The absence of clear relationships implies that additional environmental (such as soil moisture availability and temporal rainfall distribution) or management factors may have exerted stronger influence on crop performance.

CONCLUSION

Soil EC and plant density does not predict maize yield, indicating stronger effects from moisture and soil fertility.

FUTURE WORK / REFERENCES

- ☐ Examine interactions between EC and other factors affecting maize productivity.
- Ansu, E., Gyasi Santo, K., Khalid, A.A., Abdulai, M., Ntiamoah Afreh, D., Atakora, K. (2023). Yield Response of Hybrid and Open Pollinated Maize (Zea mays L.) Varieties to Different Levels of Fertilizer Nitrogen under Rain-Fed Conditions in the Bono Region of Ghana. *International Journal of Agronomy*, (1), 2437607. https://doi.org/10.1155/2023/2437607
- Kaya, F., Schillaci, C., Keshavarzi, A., Başayiğit, L. (2022). Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain. Land, 11(12), 2148. https://doi.org/10.3390/land11122148

