

1 *Proceedings*

2 **The Impact of Advertising Signage and Street Configurations 3 on Traffic Safety**

4 **WAN-JU WU¹, CHIA-YING LU² and YUNG-CHUNG CHUANG**

5 ¹ Affiliation 1; luluwu0909353059@gmail.com

6 ² Affiliation 2; htolah002323@gmail.com

7 * Correspondence: luluwu0909353059@gmail.com; Tel.:886-0909063302

8 **Abstract:** With the rapid pace of urbanization, the streetscapes of commercial districts have become
9 increasingly complex. The dense presence of advertising signage, combined with diverse street net-
10 work patterns, can potentially affect traffic safety and the overall visual quality of urban spaces. In
11 Tainan's Central West District, where blocks are compact and intersections are frequent, the high
12 density of commercial signage may distract drivers and increase the risk of accidents. This study
13 aims to investigate the interplay between advertising signage and street configurations on traffic
14 safety, with the goal of developing measurable indicators to inform future streetscape design and
15 traffic planning.

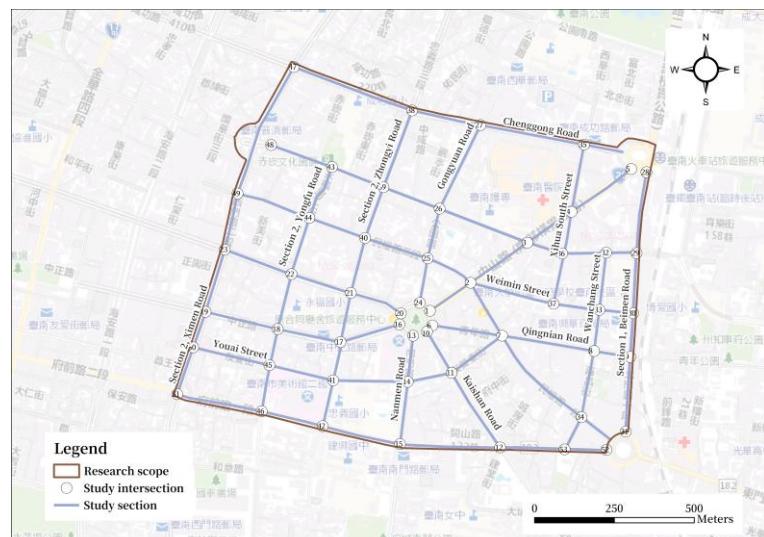
16 **Keywords:** Advertising Signage, Street Morphology, Traffic Safety
17

18 **1. Introduction**

19 Street configuration, as an essential component of urban space, influences not only
20 the quality of the urban environment but also has a direct impact on traffic safety and
21 the public order. Among these elements, advertising signage has become a widely used
22 type of streetscape feature due to the rapid growth of commercial activities. However,
23 dense or poorly designed signage can create various problems, such as visual pollution,
24 a sense of spatial congestion, and distractions for drivers and pedestrians, thereby in-
25 creasing the potential risk of traffic accidents.

Citation: Wu, WJ.; Lu, CY;
Chuang, YC. The Impact of Adver-
tising Signage and Street Configura-
tions on Traffic Safety. *SUPTM 2026*
conference proceedings xx.
<https://doi.org/10.31428/xxxxx>

Publisher's Note: UPCT and Sci-
forum stays neutral with regard to ju-
risdictional claims in published maps
and institutional affiliations.



Copyright: © 2024 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(<https://creativecommons.org/licenses/by/4.0/>).
33
34
35
36
37
38

39
40

32 **2. Area of study**

33 This study focuses on the West Central District of Tainan City as the research area,
34 which features a complex street layout and a high density of advertising signage. The
35 study targets the district's most commercially active sections and selects 20 representative
36 street segments as the research road sections, along with 53 intersections formed by these
37 segments as the research intersections. Through the three analytical dimensions of points,
38 lines, and areas, this study examines the intersections, road segments, and road network
39 within the research area, aiming to provide assessment indicators and recommendations
40 regarding the impacts of advertising signage and road characteristics on traffic safety.

Steps	Research Process	Research Methods	
			“Tainan City Public Pipeline GIS – Traffic Signal System” are used to identify the signal types for each intersection.
		Accident Rate	Accident hotspot data from the “Traffic Safety Dashboard” are used to collect accident records for each intersection from 2021 to 2025, and their average value is calculated.
5	Questionnaire Survey	A questionnaire survey is conducted with experts, scholars, and the general public to obtain quantitative evaluations of each indicator, ranging from “very low impact” to “very high impact.” These scores serve as reference data for the subsequent analysis.	
6	Indicator Classification and Mapping of Scores	The quantitative indicator scores provided by the researcher, experts, and the public are compiled and classified to evaluate the research area, road segments, and intersections. ArcGIS is then used to map the scoring results from each respondent group.	
7	Conclusion and Analysis	This study combines the scores from the researcher, experts, and the public, and uses ArcGIS to create total score maps for the study area, road segments, and intersections, showing the spatial distribution of overall results.	

4. Results

After integrating the evaluations from graduate students, experts, and the general public, clear differences in the distribution of risk within the study area can be observed.

For the road segments, Section 1 of Beimen Road received the highest score of 20.8, indicating that respondents generally perceived this segment as having higher potential risks, particularly in terms of signage density and visual distraction. In contrast, Nanmen Road scored only 11.6, making it the segment consistently regarded as the safest by all respondent groups. This reflects its relatively simple road environment and lower visual pressure. As for intersections, higher-risk evaluations are concentrated along Section 2 of Ximen Road, where many accidents have also occurred. Among them, the intersection of Section 1 of Beimen Road and Kaishan Road stands out with the strongest perceived risk, suggesting higher traffic volume or greater complexity at that location.

Figure 2. The combined evaluation results of graduate students, experts and scholars, and the general public.

1 5. Conclusions

2 Overall, the study area received a composite score of 13.8 out of 40. This value reflects
3 the average of three indicator groups: road segments, road network, and intersections.
4 Although many road segments exhibit high signage density and strong visual distraction,
5 the overall score remains relatively low mainly because intersection scores were generally
6 not high. This is due to the fact that the intersection indicators include signalization rate
7 and accident occurrence. The study area has a well-developed signal system, with most
8 intersections equipped with traffic lights, and the number of accidents in recent years is
9 very low at most locations, with only a few intersections experiencing several cases annually.
10

11 As a result, the quantitative outcomes naturally pull down the overall risk score. In
12 other words, the visual environment of the road segments contributes more to perceived
13 risk, while the safety level of intersections is already relatively adequate, leading the over-
14 all score to fall within the low-to-mid range.

15 It is recommended that improvements prioritize road-segment-related issues, partic-
16 ularly signage management and road-marking enhancement. Measures may include re-
17 stricting or adjusting signage density and size along high-scoring segments such as Sec-
18 tion 1 of Beimen Road (e.g., setting setback requirements, standardizing signage height,
19 or prohibiting certain large hanging signs) to reduce visual impact. Road-marking opti-
20 mization—such as introducing clearer and more intuitive lane-separation lines—can fur-
21 ther improve driving guidance.

22 For Section 2 of Ximen Road and the highest-risk intersection at Section 1 of Beimen
23 Road and Kaishan Road, it is advisable to conduct targeted audits, including sight-line
24 clearance checks, signal phase review, and evaluation of turning lanes and waiting spaces.
25 Targeted measures such as signal timing adjustments may then be applied.

26 Finally, it is suggested that the composite scores produced in this study be used to
27 determine improvement priorities, evaluate intervention effectiveness, and serve as a ref-
28 erence for further planning and maintenance.

29 References mdpi

- 30 1. Su, S.-H., Chen, Y.-W. Study on Drivers' Visual Perception and Preference toward Advertising Billboards and Planting
31 Forms. Master's Thesis, Taiwan, 2006.
- 32 2. Cheng, Y.-F. A Structural Analysis of Urban Visual Landscape Formed by Advertising Billboards: A Case Study of Taipei
33 City. Master's Thesis, Tamkang University, Taiwan, 2008.
- 34 3. Huang, K.-Y.; Lin, S.-T. A Study on Light Pollution from Lightbox Advertising Signs in Mixed Residential–Commercial Areas:
35 A Case Study of Six Shopping Streets in Taiwan. JOURNAL OF ARCHITECTURE, 2014, No. 88, 35–46.
- 36 4. Yang, S.-H.; Chien, M.-C.; Yen, J.-T.; Nien, S.-M. A Study on the Evaluation of Dirty Exterior Wall Phenomena in Buildings:
37 Hierarchical Analysis of Dirty Impacts and Trial Calculation of Dirty-Level Assessment Methods, Master's Thesis, Taiwan, 2008.
- 38 5. Wu, Y.-J. A Study on Traffic Accident Analysis and Safety Improvement in Keelung City. Master's Thesis, National Yangmingshan
39 National Chiao Tung University, Taiwan, 2004.
- 40 6. Wu, Y.; Liu, Q.; Hang, T.; Yang, Y.; Wang, Y.; Cao, L. Integrating Restorative Perception into Urban Street Planning: A Frame-
41 work Using Street View Images, Deep Learning, and Space Syntax, Cities 147, 2024, 104791.
- 42 7. Li, Y.; Yabuki, N.; Fukuda, T. Measuring Visual Walkability Perception Using Panoramic Street View Images, Virtual Reality,
43 and Deep Learning, Sustainable Cities and Society 86, 2022, 104140.
- 44 8. Yang, Y.; Wang, Q.; Wu, D.; Hang, T.; Ding, H.; Wu, Y.; Liu, Q. Constructing Child-Friendly Cities: Comprehensive evaluation
45 of street-level child-friendliness using the method of empathy-based stories, street view images, and deep learning, Cities 154, 2024, 105385.