

3RD INTERNATIONAL CONFERENCE ON FUTURE CHALLENGES IN SUSTAINABLE URBAN PLANNING & TERRITORIAL MANAGEMENT

SHORELINE: A NATURE-BASED SOLUTION (NbS) INTEGRATED CLIMATE DSS PLATFORM FOR COASTAL INFRASTRUCTURE IN BANGLADESH

Asim Abrar^{1*}, Omar Faruk^{2*}, Sadman Sadek³, and Md. Feroz Islam⁴

INTRODUCTION

In Bangladesh's coastal regions, climate-vulnerable infrastructure is often managed reactively due to limited access to timely and actionable climate data [1]. This gap has hindered the shift toward climate-smart infrastructure planning [2]. To address this, the SHORELINE project developed a digital **Climate Advisory Platform** featuring an integrated **Decision Support System (DSS)** that enables proactive, data-driven infrastructure management [3].

The platform integrates real-time sub-seasonal to seasonal (S2S) and short-to-medium term (SMTR) forecasts, historical climate data from 1981 to 2024 acquired from BMD, and multiple bias corrected, downscaled future global climate model (GCM) projections from 2025 to 2100 to generate localized advisories. Developed in partnership with **IWFM-BUET, LGED**, and supported by **BMD**, the system equips planners with the tools needed to anticipate and respond to climate risks. LGED has formally committed to piloting and adopting the platform.

GOALS

The SHORELINE project was initiated with the overarching goal of enhancing climate resilience in Bangladesh's coastal regions by transforming climate data into actionable infrastructure guidance. Specifically, it aimed to:

- Strengthen Infrastructure Resilience** by providing early warnings and supporting local authorities in protecting critical assets like drainage systems and cyclone shelters.
- Advance Data-Driven Planning** using localized climate data to guide decisions and integrate long-term climate risk into infrastructure strategies.

METHODOLOGICAL FRAMEWORK

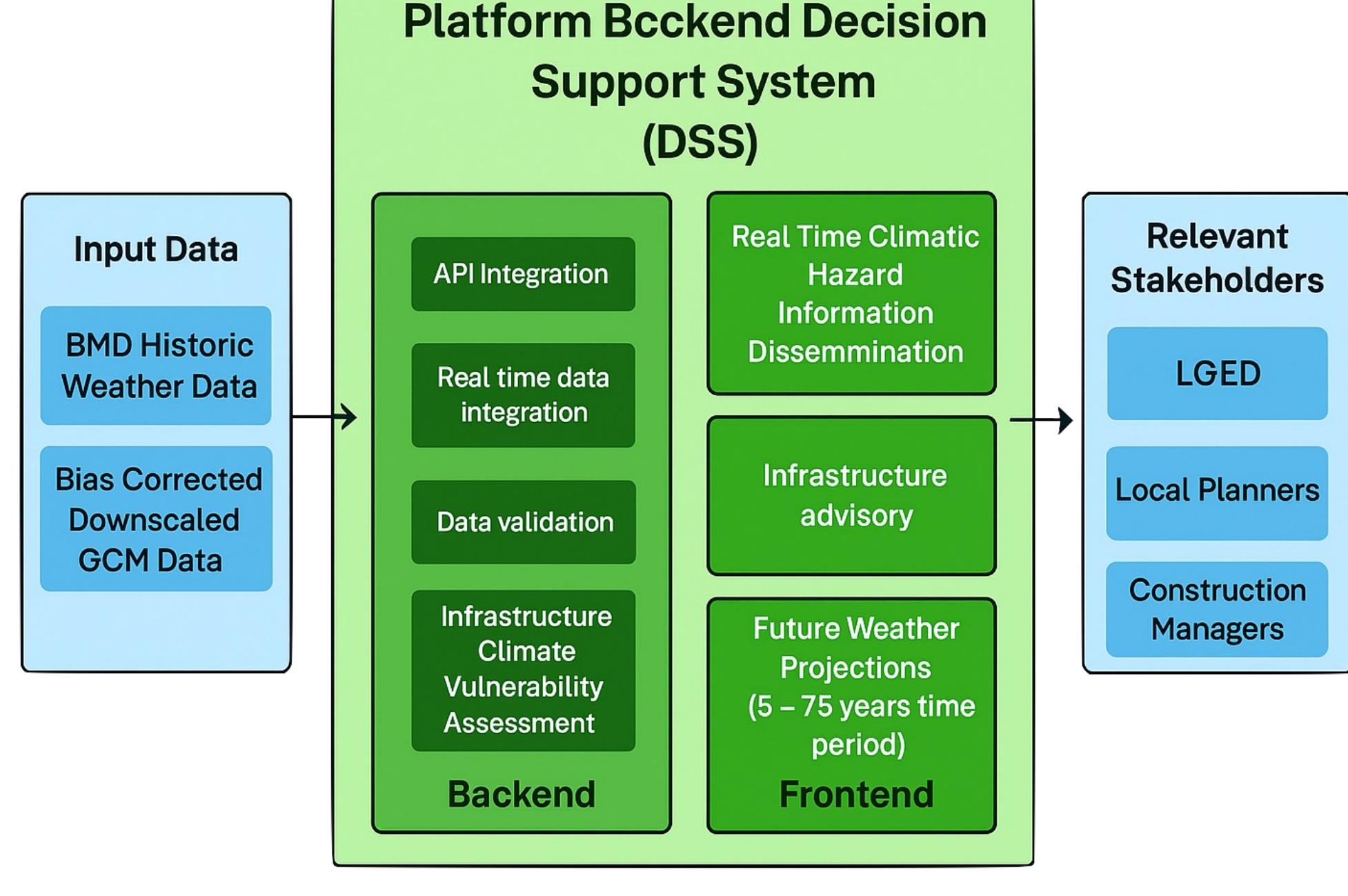


Figure 1: The SHORELINE platform's DSS analyses historic and future projected climate data to evaluate infrastructure vulnerability, providing real time hazard information and climate advisory for relevant stakeholders.

RESULTS AND DISCUSSION

The Infrastructure Advisory Panel (Figure 2) leverages the platform's Decision Support System (DSS) to deliver actionable planning and management guidance by analyzing backend infrastructure vulnerability data alongside future climate projections and short- to medium-term (SMTR) real-time forecasts.

This integrated approach enables proactive infrastructure risk management tailored to location, hazard type, and infrastructure sensitivity.

Affected Infrastructure	Alert Type	Alert Message	Preventive Measure	Managerial Preparedness	Post-Event Measure	Nature-based Solutions (NbS)
Roads & Footpath (Road)	Heat Waves & Droughts	Excessive heat can soften asphalt, cause cracking or melting and shrink underlying soil layers.	Use heat-resistant bitumen or polymer-modified asphalt; add expansion joints where needed. Store cross sections of asphalt to avoid break ones, supply extra drinking water for workers.	Restrict paving to early hours (6-10 AM). Set up shaded rest areas with temporary sheds or bamboo screens. Provide OHS, clean water in insulated containers, cool towels, and salt-colored hats. Train workers to recognize heat stress (see OSHA guide).	Seed any new cracks right away. If the surface is badly damaged, apply a layer of modified asphalt to restore it.	Plant deciduous trees along roadside to create a canopy that shades the pavement, reducing surface temperature and preventing heat-related damage. Use drought-tolerant native groundcover on shoulders and medians to maintain soil moisture and structure.
Risk Level	29 December 30 December 31 December 1 January 2 January 3 January 4 January 5 January 6 January 7 January 8 January 9 January 10 January 11 January 12 January 13 January					
Affected Infrastructure	Alert Type	Alert Message	Preventive Measure	Managerial Preparedness	Post-Event Measure	Nature-based Solutions (NbS)
Roads & Footpath (Road)	Cold Waves	Prolonged cold makes asphalt brittle, creates cracks, and reduces road friction due to freeze-thaw cycles.	Use cold-resistant mixes; do pre-season crack sealing to prevent bigger damage. Store cold salt mix, de-icing sand or grit, and warm PPE for crews.	Schedule hot-mix laying between 11 AM-3 PM. Provide heated shelters or wind-block tents for breaks. Offer warm tea, soup, or hot water if needed. Supply windproof jackets, gloves, and insulated boots. Contact local groups for the Red Crescent for extra warm clothing if needed.	Inspect roads regularly and repair cracks or potholes as soon as they appear. If surfaces become slippery, apply cold-resistant materials to improve safety.	Plant evergreen trees and shrubs as windbreaks along the roadside to reduce wind speeds on the pavement surface. This can help moderate the freeze-thaw cycles that damage asphalt.
Risk Level	29 December 30 December 31 December 1 January 2 January 3 January 4 January 5 January 6 January 7 January 8 January 9 January 10 January 11 January 12 January 13 January					
Affected Infrastructure	Alert Type	Alert Message	Preventive Measure	Managerial Preparedness	Post-Event Measure	Nature-based Solutions (NbS)
Buildings	Cold Waves	Extended cold can cause concrete to crack, and make interiors uncomfortable for workers.	Use frost-resistant concrete mixes, insulate pipes and walls if possible, weatherize doors and windows. Store insulating wraps, warm PPE, and temporary heaters for use.	Avoid concrete pours during the coldest hours, aim for mid-day the heat-mix laying if it's required. Provide heated shelters or wind-block tents for breaks. Offer warm tea, soup, or hot water if needed. Supply windproof jackets, gloves, and insulated boots. Contact local groups for the Red Crescent if frost is expected.	Seal cracks promptly, implement cold-resistant measures and repair damage. Make sure the site is ready for the next cold spell.	Install green roofs and green walls to provide an extra layer of natural insulation, reducing heat loss. Plant evergreen trees and shrubs on windbreaks, especially on the north side, to shield the building from cold winds and reduce drafts.
Risk Level	29 December 30 December 31 December 1 January 2 January 3 January 4 January 5 January 6 January 7 January 8 January 9 January 10 January 11 January 12 January 13 January					

Figure 2: The Infrastructure Advisory System module of the SHORELINE platform converts climate forecasts into targeted, time-sensitive advisories for specific infrastructure types, aligning forecast data with vulnerability insights to support proactive risk management.

The Infrastructure Planning Management panel (Figure 3) enables users to explore historic and projected climate data (1981–2100) for temperature and rainfall. By selecting a location, time range, and infrastructure type, users receive tailored insights and long-term planning advisories to support climate-resilient investment and design. Key functions of the panel include:

- Location-Based Trends:** View climate data by district or upazila.
- Climate Graphs:** Visualize temperature and rainfall (1981–2100).
- Infrastructure Insights:** Choose infrastructure type to receive relevant projections and recommendations.
- Custom Timeframes:** Plan over 5 to 75 years.
- Downloadable Reports:** Export planning briefs.
- Design Guidance:** Receive risk-based engineering recommendations.

This panel bridges the gap between climate projections and infrastructure planning, helping ensure that investments are future-proofed against evolving environmental threats.

The climate projections for the selected Upazilas are computed using two datasets: historic weather data recorded by the BMD and projections from 13 CMIP6 GCM models. The projected data is validated against the historic records to estimate average maximum and minimum climate values, while extreme scenarios are cross-verified to ensure reliability. This validated dataset is further enhanced through integration with real-time API feeds.

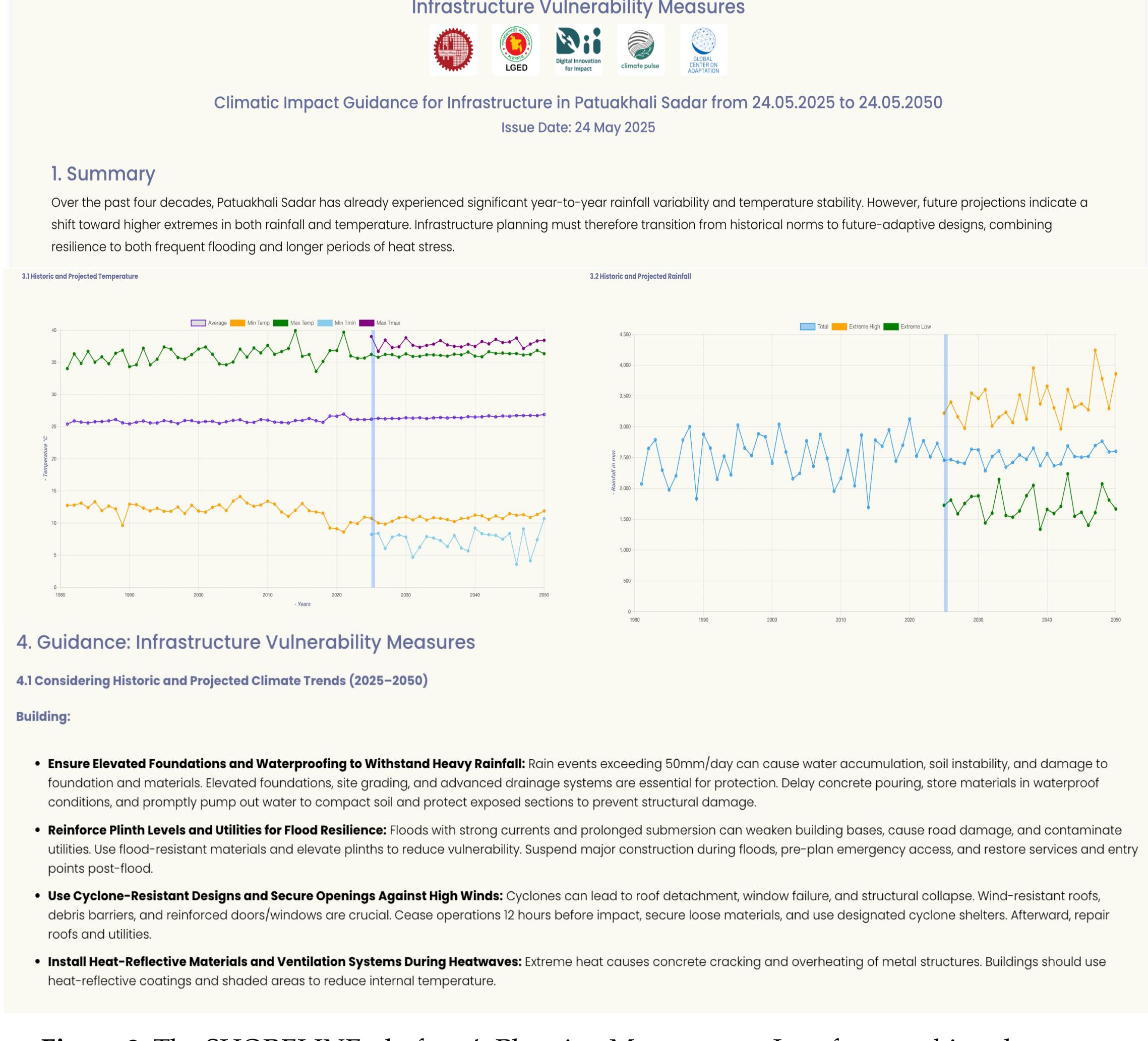


Figure 3: The SHORELINE platform's Planning Management Interface combines long-term climate projections with infrastructure vulnerability data to generate location-specific, time-bound guidance.

CONCLUSION


The SHORELINE project developed a climate-informed DSS to improve infrastructure resilience in coastal Bangladesh. By combining real-time, historical, and projected climate data, the platform provides actionable guidance for planners. With validation from BUET and LGED, it enables proactive, data-driven risk management at the local level.

ACKNOWLEDGEMENTS

This work was supported by the Youth-Led Research Grant for Disruptive Technology for Climate Resilient Infrastructure under the project "Enhancing Coastal Resilience Through Nature-Based Solutions", carried out by IWFM-BUET in collaboration with GCA to advance innovative climate-resilient infrastructure.

REFERENCES

- M. Z. Hoque, S. Cui, X. Lilai, I. Islam, G. Ali, and J. Tang, "Resilience of coastal communities to climate change in Bangladesh: Research gaps and future directions," *Watershed Ecology and the Environment*, vol. 1, pp. 42–56, 2019, doi: 10.1016/j.wsee.2019.10.001.
- Md. Z. Hossain and N. Huq, "Institutions Matter for Urban Resilience: The Institutional Challenges in Mainstreaming Climate Smart Disaster Risk Management in Bangladesh," 2013, pp. 169–191. doi: 10.1007/978-3-642-31110-9_11.
- A. Parven, I. Pal, and C. Wuthisakkaro, "Climate Smart Disaster Risk Management for a Resilient Community in Satkhira, Bangladesh," 2020, pp. 477–496. doi: 10.1007/978-981-32-9527-8_26.

