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Introduction

• Magnesium sulfide (MgS) is the first metallic sulfide molecule de-
tected in the interstellar medium (ISM), making it an important bench-
mark system for studying metal-bearing molecules in space. MgS has
been observed toward the molecular cloud G + 0.693 − 0.027 near the
galactic centre[5].

• Ionisation potential, bond length, polarisability, and dipole moment
are calculated using optimised structure though Avogadro[2] and
ORCA[4], and are presented in Table 1 along with available compar-
isons.

• Investigating electron interactions with MgS is essential for under-
standing its excitation, ionisation, and interaction mechanisms in
the ISM. Accurate e−–MgS cross-section data are therefore vital for
modelling the chemistry and radiative behaviour of metal-bearing
molecules in the galactic centre environment.

Methodology

• R-matrix method is an ab initio approach used for low-energy elec-
tron–molecule collisions, accurately describing elastic scattering, elec-
tronic excitation, and resonance features by dividing space into inner
and outer regions[3]. We used static exchange (SE), static exchange po-
larisation (SEP), and the configurational interaction (CI) model in this
study.

• The spherical complex optical potential (SCOP)[6] method uses a com-
plex potential to represent scattering:

Vopt = Vst + Vpol + Vex + iVabs

Using this optical potential, the phase shifts are obtained by solving
the Schrödinger equation. The elastic and inelastic cross sections are
then calculated from these phase shifts.

• The complex scattering potential-ionisation contribution (CSP-ic)[6]
method estimates ionisation cross sections using an energy-dependent
ratio:

Qion = Qinel · R(E)
where R(E) is the scaling function, dependent on incident electron en-
ergy.

• Target properties used are calculated using the B3LYP functional and
cc-pVTZ basis set, also available data from CCCBDB[1] and M. Rey et
al.[5] given below.

Table 1: Target Properties of MgS

IP (eV) Bond length(Å) α (Å3) µ (Debye)
Present 7.64 2.15 10.49 7.29

CCCBDB (Expt.) – 2.14 – –
Ref[5] – 2.6 – 7.07

Results & Discussion

• Figure 1a shows Qtotal from SE, SEP, and CI models. In the CI model, a
hump is observed between 0.2 and 0.3 eV in the cross sections, which
needs further investigation. Figure 1b shows the cross section ob-
tained using the SCOP method, which agrees well with the R-matrix
CI results around 20 eV, demonstrating the consistency of the calcula-
tions over the entire energy range.
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• Figure 1c presents the Qion calculations using the BEB and CSP-ic
methods. Both approaches exhibit a similar energy dependence; how-
ever, the peak of the CSP-ic cross section is shifted toward the lower
energy region compared to the BEB result.

• Qexc presented in figure 1d dominant contribution arises from the
1A1 → 1A1 transition peak at 7 eV, which is a dipole-allowed tran-
sition, and the second dominant triplet excitation channels 1A1 → 3A1
which shows strong exchange interaction at low energy. All other
channels show a smaller peak and decrease slowly with energy.

Conclusion

In this study, we performed a systematic investigation of MgS and calcu-
lated elastic, inelastic, total, ionisation, and excitation cross-sections for
the astrophysical molecule. We have also reported theoretical molecu-
lar properties of MgS. As the first systematic study of e−–MgS collisions,
the present results provide benchmark data for modelling and motivate
further experimental and theoretical investigations.
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