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Abstract: Nowadays, global warming has become more interested for scientist, because 

the global surface temperature has been increased since last century. The urban heat island 

(UHI) refers to the event of higher atmospheric and surface temperatures occurring in 

cities than in the surrounding rural areas due to urbanization. This phenomena can affect 

societies by increasing summertime, air pollution, air conditioning costs, heat related 

illness, greenhouse gas emissions and water quality. In this paper Tehran city used as case 

study area. Due to rapid urbanization progress that has resulted in significant UHI effect in 

this area. In this study, new launched Landsat series (Landsat 8) was used for monitoring 

UHI and retrieving the brightness temperatures and land use/cover types. In order to 

monitor the relationship between UHI and land cover indices, this paper tried to employ a 

quantitative approach for exploring the relationship land surface temperature (LST) and 

common land cover indices (i.e. NDVI, EVI, SAVI, NDWI, NDBaI, NDBI, MNDWI, BI, 

UI, IBI and EBBI). In this regards, the objectives of this research are to develop a kernel 

base analysis model for urban thermal environment by employing Support Vector 

Regression (SVR) algorithm. 

Keywords: Urban heat island; land use/cover indices; support vector regression. 
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1. Introduction 

The surface temperature is key factor for studying of urban climatology. It modifies the air temperature 

of the lowest layers of the urban atmosphere and also helps to determine the internal weathers of 

buildings and affects the energy balances that affect the comfortable city life [1]. The urban heat island 

(UHI) refers to the event of higher atmospheric and surface temperatures occurring in cities than in the 

surrounding rural areas due to urbanization, particularly at night [2]. The annual average air 

temperature of urban area with almost one million people can be one to three degree warmer than its 

surroundings. This phenomena can affect societies by increasing summertime, air pollution, air 

conditioning costs, heat related illness, greenhouse gas emissions and water quality. More than fifty 

percent of people are living in cities [3], in this regard, urbanization has become a key factor for global 

warming. Tehran, a capital city of Iran is case study of this research. Additionally, Tehran is one of 

megacities of the world. A megacity is usually defined as a metropolitan area with a total population in 

excess of ten million people [4]. Due to rapid urbanization progress that has resulted in significant UHI 

effect in this area. Furthermore, Tehran houses to almost twenty percent of Iranian people. Normally, 

UHIs have been monitored by in situ observations taken from thermometer networks. Recently, by 

incorporating thermal remote sensing technology, remote observation of UHIs has become available 

using satellite imageries and has facilitated monitoring of UHI. Satellite thermal imageries, especially 

high resolution imagery, has the advantage of providing a repeatable dense grid of temperature data 

over a whole city and even distinctive temperatures for individual buildings. 

Previous investigations of land surface temperatures (LST) and thermal remote sensing of urban areas 

have been conducted primarily by using AVHRR or MODIS imageries [5,6]. Currently, researchers all 

around the world use high resolution satellite imagery for investigating about thermal anomalies in 

urban area [7–9]. In this study, new launched Landsat series (Landsat 8) was used for monitoring UHI 

and retrieving the brightness temperatures and land use/cover types. The Landsat 8 carries two kind of 

sensors [10]: The Operational Land Imager (OLI) sensor has former Landsat bands, with three new 

bands: a deep blue band for coastal/aerosol studies (band 1), a shortwave infrared band for cirrus 

detection (band 9), and a Quality Assessment band. The Thermal Infrared Sensor (TIRS) sensor 

provides two high resolution (near to 30 meters) thermal bands (band 10, 11). These sensors both use 

corrected signal-to-noise (SNR) radiometric quantized over a 12-bit. Corrected SNR performance 

cause better determination of land cover type. Moreover, Landsat 8 images incorporate two valuable 

thermal bands in 10.9 µm and 12.0 µm. These two thermal bands improve estimation of UHI by 

incorporating split-window methods and has also increased opportunities for studying the UHI and 

urban-modified climates more generally. 

The UHIs can be affected by three main factors [7]: 1) the effects of energy transformation in urban 

area; 2) reduced evapotranspiration; and (3) anthropogenic energy production. Also, according [11], 

there are three types of UHIs: 1) Canopy Layer Heat Island (CLHI); 2) Boundary Layer Heat Island 

(BLHI); and 3) Surface Heat Island (SHI). The difference between these types of UHI are described by 

[9]. The main characterizing of CLHI and is that BLHI represent as warming the urban atmosphere and 

SHI represent as warming the urban surface. Also, the main difference between CLHI and SHI is place 
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where temperature is appeared and detected. Usually, CLHI is detected by fixed air temperature 

measurement (in situ data) in the canopy layer, while remotely sensed thermal imageries observe the 

spatial patterns of upwelling thermal radiance to estimate the LST [1] of the SHI. 

Recently, quantitative models for urban thermal environment and related factors have been studied, for 

example, the relation between UHI and land cover structure and established corresponding regression 

equation [2,8]. Similar works have been done and models of the relation between the surface 

temperature and various vegetation indices have been established [12,13]. In order to monitor the 

relationship between UHI and land cover indices, this paper tried to employ a quantitative approach for 

exploring the relationship SHI and common land cover indices and select suitable indices, including 

the Normalized Difference Vegetation Index (NDVI) [14], Enhanced Vegetation Index (EVI) [14], 

Soil Adjusted Vegetation Index (SAVI) [15], Normalized Difference Water Index (NDWI) [16], 

Normalized Difference Bareness Index (NDBaI) [13,17], Normalized Difference Build-up Index 

(NDBI) [18], Modified Normalized Difference Water Index (MNDWI) [19], Bare Soil Index (BI) 

[17,18], Urban Index (UI) [20], Index-based Built-Up Index (IBI) [21] and Enhanced Built-Up and 

Bareness Index (EBBI) [22]. Behind these indices, the tasselled cap transformation (TCT) that 

calculated for Landsat 8 imagery is used for compressing spectral data into a few bands associated 

with physical scene characteristics with minimal information loss [23]. The three TCT information, 

Brightness, Greenness and Wetness computed and incorporated for predication of UHI effect. In this 

regards, the objectives of this research are to develop a non-linear and kernel base analysis model for 

urban thermal environment by employing Support Vector Regression (SVR) method [24].   

2. Proposed Method  

In this study Landsat 8 imagery was used as input data for estimation SHI map and also various 

urban and vegetation indices. The Figure 1. illustrated the flowchart of proposed methods. 

 

Figure 1. Flowchart of proposed methods. 

As it clear form Figure 1., after importing Landsat 8 imagers, atmospheric and radiometric 

correction is done. The next step starts with producing urban and vegetation indices with brightness 

temperature (BT) of thermal bands in 10.9 µm and 12.0 µm (band 10, 11) [25]. In addition in this step 
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by incorporating Landsat 8 LST algorithm that introduced in [26], we calculate LST data for our 

datasets by using split-window (SW) algorithm (Eq 1.).  

𝐿𝑆𝑇 = 𝑐0 + 𝑇𝑏10 + 𝑐1(𝑇𝑏10 − 𝑇𝑏11) + 𝑐1(𝑇𝑏10 − 𝑇𝑏11)2 + (𝑐3 + 𝑐4𝜔)(1 − 𝜀) + (𝑐5 + 𝑐6𝜔)Δ𝜀 (1)  

where 𝑇𝑏10 and 𝑇𝑏11 are the at sensor BTs (in kelvins), ε is the mean emissivity, 𝜀 = 0.5(𝜀𝑏10 + 𝜀𝑏11), 𝛥𝜀 

is the emissivity difference, 𝛥𝜀 = (𝜀𝑏10 − 𝜀𝑏11), 𝜔 is the total atmospheric water vapor content (in g · 

cm
−2

) that we set to 𝜔 = 3 as mention in [26], and c0 to c6 are the SW coefficients that computed in 

[26]. For estimating 𝜀𝑏10 and 𝜀𝑏11 in this study, we incorporate simultaneously MODIS product [27] for 

same area. In the next section procedure of computing urban and vegetation indices are introduced. 

2.1. Urban and Vegetation Indices  

The main and most important urban and vegetation indices are used in this study. These indices can be 

divided to two type: 1) urban indices and 2) vegetation indices. 

2.1.1. Urban Indices  

The widespread and common urban indices are shown in the Table 1. The most of these indices 

extract urbanization parameters related to spectral difference of visible, near infrared and short wave 

infrared bands of Landsat 8 Imagery. All indices from Table 1. calculated based on incorporating 

digital number (DN) of Landsat 8 bands. 

Table 1. Extracted urban indices form Landsat 8 imagery. 

No. Name of urban index Formulation 

1 Normalized Difference Bareness Index (NDBaI) 𝑁𝐷𝐵𝑎𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑇𝐼𝑅𝑆1

𝑆𝑊𝐼𝑅1 + 𝑇𝐼𝑅𝑆1
 

2 Normalized Difference Build-up Index (NDBI) 𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

3 Bare Soil Index (BI) 𝐵𝐼 =
(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) − (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)

(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) + (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)
 

4 Urban Index (UI) 𝑈𝐼 =
𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅
 

5 Index-based Built-Up Index (IBI) 𝐼𝐵𝐼 =
2×𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
− ( 𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝐸𝐷
−

𝐺𝑅𝐸𝐸𝑁
𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅1

)
2×𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
+ ( 𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝐸𝐷
−

𝐺𝑅𝐸𝐸𝑁
𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅1

)
 

6 Enhanced Built-Up and Bareness Index (EBBI) 𝐸𝐵𝐵𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

10√𝑆𝑊𝐼𝑅1 + 𝑇𝐼𝑅𝑆1
 

 

2.1.2. Vegetation Indices 

As before, in the Table 2. computable vegetation indices extracted from spectral bands like, visible, 

near infrared and short wave infrared bands of Landsat 8 Imagery are illustrated. All these indices 

calculated based on incorporating radiance (Rad) or reflectance (Ref) of related Landsat 8 bands by 

using procedure introduced in [25]. 
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Table 2. Extracted vegetation indices form Landsat 8 imagery. 

No. Name of urban index Formulation 

1 Normalized Difference Vegetation Index (NDVI) 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

2 Enhanced Vegetation Index (EVI) 
𝐸𝑉𝐼 = 𝐺 ×

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸 + 𝐿
 

𝐿 = 1; 𝐶1 = 6; 𝐶2 =  7.5; 𝐺 = 2.5 

3 Soil Adjusted Vegetation Index (SAVI) 
𝑆𝐴𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
× (𝐿 + 1) 

0 < 𝐿 < 1 ⇒ 𝐿 = 0.5 

4 Normalized Difference Water Index (NDWI) 𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1
 

5 
Modified Normalized Difference Water Index 

(MNDWI) 
𝑀𝑁𝐷𝑊𝐼 =

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

6 Tasselled Cap Transformation (TCT) Brightness 

7 Tasselled Cap Transformation (TCT) Greenness 

8 Tasselled Cap Transformation (TCT) Wetness 

 

2.2 Support Vector Regression 

The SVR is a new supervised learning method which emerged in late 1970s [24]. SVR allows 

computing a powerful nonparametric approximation of the relationship between urban/vegetation 

indices and SHI change. This technique is also used in most remote sensing applications like LST and 

SST retrieval [28], biophysical parameter estimation and other leaf area index estimation from 

multispectral satellite images [29]. 

Consider a set of training points, {(𝑥1, 𝑧1), … , (𝑥𝑙, 𝑧𝑙)} , where 𝑥𝑖 ∈ ℝ𝑛  is a feature vector and 

𝑧𝑖 ∈ ℝ1 is the target output. Under given parameters 𝐶 > 0 and 𝜖 > 0 the standard form of support 

vector regression [24,30] is  

min
𝜔,𝑏𝜉,𝜉∗

1

2
𝜔𝑇𝜔 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑙

𝑖=1
 

subject to 𝜔𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑧𝑖 ≤ 𝜖 + 𝜉𝑖 

                 𝑧𝑖 − 𝜔𝑇𝜙(𝑥𝑖) − 𝑏 ≤ 𝜖 + 𝜉𝑖
∗ 

      𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙 

(2)  

By introducing Lagrange multipliers and exploiting the optimality constraints, the decision function 

has the following explicit form: 

∑ (𝛼𝑖 + 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥)

𝑙

𝑖=1
+ 𝑏, 0 ≤ 𝛼𝑖 ≤ 𝐶, 0 ≤ 𝛼𝑖

∗ ≤ 𝐶 (3)  

 

where 𝑙 is the number of support vectors (SVs) and the kernel function 

𝐾(𝑥𝑖, 𝑥) = ∑ 𝜙𝑗(𝑥)𝜙𝑗(𝑥𝑖)
𝑚

𝑗=1
 (4)  

and 𝛼𝑖
∗ are Lagrange multipliers. 
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3. Experimental Result  

In this study two Landsat 8 images that acquired from Tehran city area was used as datasets. 

Information about these images are represented in Table 3. Dataset #1 is belong to summer time that 

air temperature in these times is near to1 40
o
C, and another one is belong to winter time. 

Table 3. Landsat 8 images for studying SHI 

Dataset Acquisition date Area 

#1 15-JUN-14 Tehran City 

#2 08-DEC-14 Tehran City 

 

As mention in previous section by incorporating Landsat 8 LST retrieval algorithm (Eq. 1) and 

contemporary MODIS product for estimating emissivity of two thermal bands (i.e. εb10 and εb11), SHI 

is estimated. In addition, urban, vegetation and TCT (Brightness, Greenness and Wetness) indices from 

DN/Ref Landsat 8 images were calculated. Calculated indices and information using dataset #1 is 

shown in Figure 2.  

 

    
RGB LST NDVI EVI 

    
SAVI NDWI MNDWI NDBI 

    
NDBaI Brightness Greenness Wetness 

    
BI UI IBI EBBI 

Figure 2. Urban, vegetation and TCT indices for dataset #1. 

Same computation is done for dataset #2 and calculated urban, vegetation and TCT (Brightness, 

Greenness and Wetness) indices are illustrated in Figure 3. 
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RGB LST NDVI EVI 

    
SAVI NDWI MNDWI NDBI 

    
NDBaI Brightness Greenness Wetness 

    
BI UI IBI EBBI 

Figure 3. Urban, vegetation and TCT indices for dataset #2. 

 

Next step is performed by SVR technique to relate extracted urban, vegetation and TCT indices to 

SHI data (Eq. 5). 

𝑆𝐻𝐼 = 𝑓(𝑁𝐷𝑉𝐼, 𝐸𝑉𝐼, 𝑆𝐴𝑉𝐼, 𝑁𝐷𝑊𝐼, 𝑀𝑁𝐷𝑊𝐼, 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 

, 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠, 𝑊𝑒𝑡𝑛𝑒𝑠𝑠, 𝑁𝐷𝐵𝑎𝐼, 𝑁𝐷𝐵𝐼, 𝐵𝐼, 𝑈𝐼, 𝐼𝐵𝐼, 𝐸𝐵𝐵𝐼) 

(5)  

In this regards, as mention in previous section we adopted SVR technique. In SVR, the parameter C 

computes the tradeoff between the flatness and the degree to which deviations larger than ε are 

tolerated in the optimization formulation. In this manner, if C is too large, then the objective is to 

minimize the empirical risk without regard to flatness part in the optimization formulation. The bigger 

the ε is, the fewer support vectors will be included. Therefore, more ‘flat’ estimation is consequence of 

bigger ε values. In fact, both C and ε values affect the flatness (model complexity). In this paper, C 

value is computed by (Eq. 6) base on [31]. 

𝐶 = max(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) − min (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) (6)  

Also, a Gaussian radial basis function (RBF) kernel (Eq. 4) is used; this function is widely used in 

remote sensing algorithm. Prior to the estimating regression stage, simple scaling/normalizing must be 

done on the training data. The main advantage of scaling is to avoid attributes in greater numeric 

ranges dominating those in smaller numeric ranges. Another advantage is to reduce numerical 
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complexity during the computation. The next step is the training procedure, during which some critical 

SVR parameters ε and in the RBF kernel γ, must be specified. A simple tool to check a grid of 

parameters is provided by cross-validation (CV) error (i.e. mean square error (MSE)) with 5-fold. 

Range of grid search method for estimating ε parameter is [0,5] and for γ RBF parameter is [2
-7

,2
7
]. 

Then, 720 (30% of data) random point was selected as training data and 1680 (70% of data) random 

point is selected as testing data extracted from dataset #1 and #2. In this manner, Table 4. and 5. are 

illustrated the optimum SVR parameters estimation for dataset #1 and #2 respectively. It is obvious 

from Table 4. that the optimum SVR parameters for dataset #1 are 𝜖 = 0, 𝛾 = 2 and C=22.40. Again, 

from Table 5. the optimum SVR parameters for dataset #2 are 𝜖 = 0, 𝛾 = 1 and C=15.14. 

 

Table 4. Optimum SVR parameters estimation for dataset #1 with  

C= 22.4013. 

 𝜖 = 0 1 2 3 4 5 

𝛾 = 2−7 8.9248 8.9647 9.044 9.2615 9.4912 9.8826 

2−6 8.1931 8.302 8.4365 8.8251 9.0959 9.6601 

2−5 7.2267 7.3276 7.672 8.1622 8.5831 9.2708 

2−4 5.8522 5.9942 6.6195 7.2668 7.9778 8.76 

2−3 3.9949 4.4532 5.2895 6.2399 7.2854 8.105 

2−2 2.372 2.9398 3.9742 5.2427 6.397 7.4099 

2−1 1.5473 2.1104 3.174 4.4679 5.7297 6.8946 

20 1.4013 1.801 2.8437 4.0502 5.4578 6.598 

21 1.3833 1.6836 2.552 3.7709 5.1794 6.5787 

22 1.5092 1.6205 2.4686 3.7119 5.2035 6.759 

23 1.7264 1.8258 2.6858 3.9737 5.3606 7.1223 

24 1.9631 2.2332 3.2883 4.468 5.9297 7.6059 

25 2.4885 2.9571 4.2283 5.5619 6.9744 8.2201 

26 3.554 4.1001 5.4872 6.8119 8.1602 9.2165 

27 5.1897 5.94 7.131 8.2575 9.3713 10.3855 

 

Table 5. Optimum SVR parameters estimation for dataset #2 with 

C= 15.1443. 

 𝜖 = 0 1 2 3 4 5 

𝛾 = 2−7 3.5728 3.6203 3.7465 3.9453 4.2763 4.9328 

2−6 3.2757 3.3461 3.5428 3.8146 4.1926 4.8525 

2−5 2.8064 2.9516 3.2566 3.6565 4.0248 4.6816 

2−4 2.1372 2.3853 2.873 3.4025 3.8541 4.633 

2−3 1.3728 1.7408 2.3534 3.1273 3.6953 4.4949 

2−2 0.8369 1.214 1.9527 2.8148 3.6012 4.3988 

2−1 0.6188 0.9288 1.6741 2.5687 3.51 4.3752 

20 0.552 0.7768 1.495 2.4868 3.3917 4.4282 

21 0.5736 0.7643 1.4816 2.4259 3.3971 4.624 

22 0.6387 0.8361 1.5391 2.4159 3.5788 4.9251 

23 0.7551 0.9701 1.7051 2.7299 3.7836 5.0233 

24 0.9101 1.1954 2.0664 3.0564 4.0309 5.0652 

25 1.2115 1.5772 2.4113 3.3655 4.1731 5.2 

26 1.6435 2.0494 2.8103 3.6314 4.4022 5.3901 

27 2.2376 2.6204 3.2666 3.9472 4.6724 5.6117 
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By incorporating the best estimated parameters (𝜖, 𝛾 and C) with minimum validation error (MSE), 

the performance of the selected final SVR model is computed for dataset #1 (Table .6) and dataset #2 

(Table. 7) respectively. 

Table 6. The performance of final SVR model for dataset #1. 

 MSE NRMS R2 

Training 0.7507 0.2424 0.9442 

Test 1.1155 0.3053 0.9100 

As it clear from both Table 6. and Table 7. that, there are high degree of consistency between 

incorporated information for each dataset and SHI. For example, correlation coefficient between 

training and test data are R
2
= 0.9442 and R

2
=0.9100 for dataset #1. Also, correlation coefficient 

between training and test data are R
2
= 0.9113 and R

2
=0.9051 for dataset #2. 

 

Table 7. The performance of final SVR model for dataset #2. 

 MSE NRMS R2 

Training 0.4307 0.3035 0.9113 

Test 0.4546 0.3113 0.9051 

4. Conclusions  

All range of Landsat 8 spectral bands have been used for estimating SHI of Tehran city, especially 

thermal bands. In this study, urban indices including NDBaI, NDBI, BI, UI, IBI and EBBI have been 

calculated using recent urban parameters and factors. In addition, for better investigating vegetation 

factors, more common vegetation and water indices including NDVI, EVI, SAVI, NDWI and MNDWI 

behind TCT information including Brightness, Greenness and Wetness have been used. By utilizing 

these information and indices modeling and monitoring of SHI are more feasible. Also as part of this 

study, the powerful regression model, the SVR is used to monitor SHI variation in two different time 

(dataset #1 and #2) from summer to winter. Incorporating this procedure reveled that there is high 

degree of consistency between affected information and LST images (MSE=0.75 for dataset #1 and 

MSE=0.43 for dataset #2). This study must be completed by incorporating supervised feature selection 

method to select suitable features and indices from urban and vegetation information.  

References and Notes 

1. Voogt, J. A.; Oke, T. R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 

370–384. 

2. Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa 

Bay and Las Vegas using Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. 

3. World’s population increasingly urban with more than half living in urban areas | UN DESA | 

United Nations Department of Economic and Social Affairs. 



 10 

 

 

4. Dihkan, M.; Karsli, F.; Guneroglu, A.; Guneroglu, N. Evaluation of surface urban heat island 

(SUHI) effect on coastal zone: The case of Istanbul Megacity. Ocean Coast. Manag. 

5. Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote 

Sens. 2002, 23, 2595–2608. 

6. Imhoff, M. L.; Zhang, P.; Wolfe, R. E.; Bounoua, L. Remote sensing of the urban heat island effect 

across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. 

7. Ogashawara, I.; Bastos, V. da S. B. A Quantitative Approach for Analyzing the Relationship 

between Urban Heat Islands and Land Cover. Remote Sens. 2012, 4, 3596–3618. 

8. Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the Urban Heat Island Effect in 

Shijiazhuang, China Using Satellite and Airborne Data. Remote Sens. 2015, 7, 4804–4833. 

9. Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and Ground-Based Sensors for the Urban Heat Island 

Analysis in the City of Rome. Remote Sens. 2010, 2, 1400–1415. 

10. Landsat 8 http://landsat.usgs.gov/landsat8.php (accessed May 20, 2015). 

11. Actionbioscience | Urban Heat Islands: Hotter Cities 

http://www.actionbioscience.org/environment/voogt.html (accessed May 20, 2015). 

12. Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The Impacts of Rapid Urbanization on 

the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. Remote Sens. 2012, 

4, 2033–2056. 

13. Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the 

relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 

133–146. 

14. Kriegler, F. J.; Malila, W. A.; Nalepka, R. F.; Richardson, W. Preprocessing transformations and 

their effects on multispectral recognition. In Remote Sensing of Environment, VI; 1969; Vol. 1, p. 97. 

15. Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. 

16. Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid 

water from space. Remote Sens. Environ. 1996, 58, 257–266. 

17. Zhao, H.; Chen, X. Use of normalized difference bareness index in quickly mapping bare areas 

from TM/ETM+. In Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. Proceedings. 

2005 IEEE International; 2005; Vol. 3, pp. 1666–1668. 

18. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping 

urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. 

19. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features 

in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. 

20. Kawamura, M.; Jayamana, S.; Tsujiko, Y. Relation between social and environmental conditions in 

Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. Int Arch 

Photogramm Remote Sens 1996, 31, 321–326. 

21. Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 

2008, 29, 4269–4276. 

22. As-syakur Abd Rahman; Adnyana, I. W. S.; Arthana, I. W.; Nuarsa, I. W. Enhanced Built-Up and 

Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area. Remote Sens. 2012, 4, 

2957–2970. 



 11 

 

 

23. Baig, M. H. A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based 

on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. 

24. Drucker, H.; Burges, C. J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression 

machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. 

25. Using the USGS Landsat 8 Product http://landsat.usgs.gov/Landsat8_Using_Product.php (accessed 

May 20, 2015). 

26. Jimenez-Munoz, J. C.; Sobrino, J. A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface 

Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote 

Sens. Lett. 2014, 11, 1840–1843. 

27. MOD11A2 | LP DAAC :: NASA Land Data Products and Services 

https://lpdaac.usgs.gov/products/modis_products_table/mod11a2 (accessed May 22, 2015). 

28. Moser, G.; Serpico, S. B. Automatic Parameter Optimization for Support Vector Regression for 

Land and Sea Surface Temperature Estimation From Remote Sensing Data. IEEE Trans. Geosci. 

Remote Sens. 2009, 47, 909–921. 

29. Durbha, S. S.; King, R. L.; Younan, N. H. Support vector machines regression for retrieval of leaf 

area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. 

30. Smola, A. J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–

222. 

31. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM 

regression. 2004, 17, 113–126. 

 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


