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Abstract:  

 
 Tropical forest natural and anthropogenic changes can be tracked using a pixel based time-series analysis of 

multi-temporal Interferometric Synthetic Aperture Radar (InSAR) backscatter and coherence provided by 
TanDEM-X.  A pixel trajectory is defined as a set of values of all resolution elements (backscatter or coherence) 

at the same row and column position in the stack of images. Analysis of the trajectories over an area by means 

of a set of parameters (features) that characterize its time evolution can give insight on the nature and changes of 

tropical forest due to disturbance events (e.g. deforestation and forest degradation) but also due to natural 
changes in environmental conditions (e.g. increased rainfall). The following set of trajectory features was 

computed: linear fitting (trend), dispersion around trend (RMSE), maximum change (swing), statistics of the 

trajectory finite difference at one step (variance and intermittency). Results indicate that linear regression 
parameters captured changes due to forest/non forest conversion with negative slope indicating clearing events. 

The study reports results from a highly disturbed tropical forest environment in the Republic of Congo. 
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1. Introduction 

The Congo Basin hosts the second largest dense humid tropical forest in the world after the Amazon 

rainforest playing a crucial role in the global climate system and providing benefits in terms of 

livelihoods [1]. The role of tropical forests in international agreements such as the United Nations 

Framework Convention on Climate Change (UNFCC) is critical and in particular for international 

initiatives such as Reducing Emission from Deforestation and Forest Degradation (REDD+). Forest 

disturbance mapping (deforestation and forest degradation) and monitoring in tropical forests of the 

Congo Basin is most efficiently accomplished using remote sensing. Mapping forest disturbance with 

the use of orbital Synthetic Aperture Radar (SAR) has many advantages over optical sensor due to the 

ability to penetrate cloud cover and haze and being independent of daylight conditions. The potential 

of  the TanDEM-X mission has led to the unprecedented possibility to map tropical forests at high 

spatial resolution by providing interferometric coherence as well as backscatter. The importance of this 

data for tropical forest mapping and monitoring is highlighted in the present study with analysis of a 

multi-temporal stack of TanDEM-X scenes in a highly disturbed forest setting. 

Net deforestation in Northern Congo (Likouala and Sangha provinces) has been estimated to 0.03% 

for the period between 2000-2010 mainly due to increased use of forest resources and population 

growth [1]. The greatest forest loss in the study area occurred between 1990 and 2001 around Ouesso 

giving rise to a mosaic of secondary forest and agriculture [1]. Other factor that contribute to the 

removal of vegetation include selective logging for commercial purposes.  

 

2. Study Site 

 

The analysis focuses around the city of Ouesso, Republic of Congo (UL: 15º 56’20.02’’ E, 1º 

44’42.83” N) and covers 25 x 40 km (Figure 1). The area is dominated by dense humid evergreen 

forest from the Guinean Congolese region (with areas affected by selective logging and thus variations 

from closed to more open canopy cover due to level of disturbance undergone in the past) and swamp 

forest around the Sangha river. The site is prone to a high level of disturbance for instance in proximity 

of urban centers where, clearing for agricultural purposes and shifting cultivation is extensive. The 

clearings are on average no larger than 1 ha and are concentrated around the city of Ouesso and Mboko 

and along the N2 road network. The Ngombe and Pokola logging concession are also situated within 

the study site where, exploitation of forest through selective logging has been undertaken on rotation 

between 1985 and 2008 but has now stopped. The impact is still detectable visually by the presence of 

old logging roads in certain areas. However, rapid forest recovery is proving difficult to identify areas 

where logging occurred in the past. 
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Figure 1. Study sites location near Ouesso, Republic of Congo (RoC).  

Data Source: World Resources Institute and DLR. 

  

 

3. Dataset and Processing 

 

Six TanDEM-X StripMap scenes (supplied by DLR through the VEGE03030 AO) were acquired 

between 2012 and 2014, at HH polarization, 47º incidence angle and descending mode. The data was 

processed using SARScape software (5.0) [2] and included the following steps: a) multi-looking (2 

range and 2 azimuth looks, corresponding to a slant range pixel size of 3.69 x 3.73 m); b) 

interferometric workflow (interferogram generation and flattening, adaptive local frequency filter and 

coherence generation); c) co-registration d) multi-temporal filtering e) geocoding in a Geo-Global 

Lat/Lon system with 3.33 10
-5 

degree pixel size (approximately 4 m). Both the backscatter (power) and 

the coherence datasets were co-registered and filtered to reduce noise (speckle and coherence estimator 

variance) using the multi-temporal filter implemented in SARScape and based on the principle 

proposed in [3]. 

 

We recall the definition of interferometric coherence: 

 

 

(1) 

 

Where: 

= Complex coherence 

= Ensemble Average 

 are the complex slant range images acquired by the two Tandem instruments. The absolute value 

of coherence  is used in the following. 
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Very High Resolution data acquired in December 2013 available from Google Earth, and accumulated 

precipitation data from Tropical Rainfall Measuring Mission (TRMM) were used as ancillary reference 

data. Visual interpretation based on ancillary knowledge was used for training of the supervised 

analysis. Selected thematic classes are: closed evergreen tropical forest, swamp forest, agriculture and 

grassland. It is important to note, in the context of the time-series analysis performed in this work,  that 

the class definition corresponds to the situation at some days before t4 (December, 17th, 2013), which 

is the date of the available Google Earth dataset with the highest spatial resolution. The TanDEM-X 

datasets acquisition dates and the TRMM rainfall data at 48 h before the SAR acquisition time are 

summarized in Table 1. Notice that that the  highest precipitation occurred at t5. 

 

Table 1. Multi-temporal stack used to 

compute multi-temporal pixel trajectories. 

Time Date 
Rainfall 

(mm)* 

t1 05-Dec-2012 0 

t2 14-Mar-2013 0.587 

t3 15-May-2013 20.657 

t4 25-Dec-2013 7.603 

t5 03-Apr-2014 29.843 

t6 06-May-2014 12.382 

*based on TRMM data for a period of a 48 h 

before the date of acquisition. 

2. Methods 

2.1 Supervised Analysis 

Analysis was undertaken, in the first instance, on four 15x15 pixels areas on interest (AOI). The areas 

were selected based on ancillary information (LANDSAT and high resolution Google Earth imagery 

and previous knowledge of the area). Figure 2 shows the four AOI on a high resolution Google Earth 

scene (December, 17
th
 2013). 

Figure 2. Areas of Interest (AOI) used for the analysis on Very High Resolution Google 

Earth imagery acquired on December 17
th
, 2013 (Google Earth, 2013). 

 

(a) Agriculture 

 

(b) Lowland Forest 

 

(c) Swamp Forest 

 

(d) Grassland 
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2.2 Multi-temporal Pixel Trajectories 

A pixel trajectory is defined as a set of values of all resolution elements at the same row and column 

position in the stack of images.  The following set of trajectory features were computed on either the 

multi-temporal backscatter stack or multi-temporal coherence: a) Trend analysis by linear regression 

(line intercept, slope and coefficient of determination and deviations from the trend); b) Swing c) 

Variance of the de-trended trajectory’s finite differences at 1 step and d) Maximum of the absolute 

value of the finite difference vector. 

 

a) Trend analysis by linear regression of   , where P is the pixel value at date j, n is the 

number of dates in the multi-temporal stack. This step yields the fitting line with two parameters (slope 

m and intercept c), and the root mean squared deviations of the points from the line: 

 

  (2) 

 

 (3) 

 

b) Swing: 

  (4) 

c) Variance of the de-trended trajectory’s finite differences at 1 step (a measure of departure velocity  

from trend) : 

 

 (5) 

 

 (6) 

 

 (7) 

  

d) Maximum of the absolute value of the finite difference vector (a measure of large intermittent 

events): 

 

 (8) 

 

3. Results and Discussion 

3.1. Multi-temporal Pixel Trajectories of SAR backscatter 
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Results indicate that multi-temporal pixel trajectories pick up changes related to: (i) environmental 

conditions (effect seasonality and rainfall) and (ii) disturbance events such forest disturbance 

(deforestation).  

 

Radar cross section (RCS) (Figure 3) for the 4 AOI indicates that the variations for lowland forest and 

swamp forest are not as marked as those for agriculture and grassland. The changes in lowland forest 

(values ranging from -10.7 dB to -11.8 dB over time) and swamp forest (values ranging from -10.0 dB 

to -11.7 dB over time) can be mainly attributed to changes in environmental effects (e.g. moisture) and 

not due to anthropogenic disturbance such as clearing. While, a greater change in RCS is noticeable for 

the agriculture and grassland, this being a consequence of anthropogenic disturbance (especially for 

the class agriculture with RCS ranging between -10.8 dB and -19.2 dB). The RCS for grassland goes 

from of -14.3 dB to -12.2 dB.  

 

Lowland forest presents high RCS throughout the time series with no significant sign of disturbance 

since the area is situated far from the main villages and towns, outside of the logging concessions. 

However, there is a noticeable fluctuation in RCS for this class due to rainfall events,  these changes 

being all < 1dB. Swamp forest also presents small fluctuations in RCS (<1dB ), these being also 

attributable to the impact of environmental conditions. Grassland also undergoes changes especially at 

date 3 where RCS is highest -12.2 dB with subsequent decrease to -14.3 dB. The changes which are 

occurring within this AOI are > 1dB for dates 2&3, 3&4 and 4&5. The high RCS is attributable to the 

presence of taller grass which is then cleared and converted into bare field in preparation for 

agriculture conversion with the underlying influence of moisture conditions also contributing to the 

RCS (Figure 3d). 

 

Analysis of multi-temporal pixel features within an AOI (Figure 4) provide extra information to 

understand the RCS dynamics for the 6 dates (Table 3). The swing (difference between maximum and 

minimum in the stack) is highest for the class agriculture, because of the abrupt change due to 

conversion from vegetation to agriculture at date t5, as suggested by Figure 3a. Instead, the swing for 

both the lowland forest and the swamp forest is the  lowest. This feature indicates that the most 

dynamic classes are agriculture and grassland.  The slope of the linear fit line also suggests that the 

trend in the class agriculture is very strong and negative (-60.9) while, the slope for the other 3 classes 

is positive with swamp forest having the lowest slope (1.1). The RMSE is highest for the class 

agriculture (1.7) and lowest for the lowland forest class (0.25). The variance of the finite differences is 

much higher for the class agriculture compared to all the other AOI. The same applies for the 

maximum absolute value of the differences, with 10.5 and 29.0  respectively. 
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Figure 3. Radar Cross Section (RCS) linear regression for four AOI. 

(a) Agriculture 

 

(b) Lowland Forest 

 

(c) Swamp Forest 

 

(d) Grassland 

 

 

 

Table 2. Multi-temporal features statistics (mean) for four AOI (a) agriculture; (b) lowland 

forest; (c) swamp forest and (d) grassland. 

Feature (a) (b) (c) (d) 

Swing  8.3 1.1 1.6 2.0 

Trend Slope -60.9 10.9 1.1 15.7 

Deviations from trend (RMSE) 1.7 0.2 0.5 0.7 

Variance  10.5 0.2 0.9 2.6 

Intermittency 29.0 0.5 1.7 5.2 
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Figure 4. Multi-temporal features colour composite (R= slope, G= swing and B= Variance).for four 15 

x 15 pixel AOI. (a) agriculture; (b) lowland forest; (c) swamp forest and (d) grassland. 

(a) Agriculture 

 

(b) Lowland Forest 

 

(c) Swamp Forest 

 

(d) Grassland 

 

 

 

3.2 Multi-temporal Pixel trajectories of  Coherence 

 

Analysis of  coherence for the same  AOI revealed interesting patterns (Figure 5 and 6). Coherence for 

class agriculture reveals that this is high until t5 (0.72) (April 2014), this being  the date which is 

affected by highest precipitation. On the next date f t6 coherence remains low (0.7). The reason for the 

drop in coherence could be due to the effect of vegetation regrowth in an area which was previously 

cleared for agricultural practice,  and/or  the possibility of the area to be flooded. Regarding the first 

hypothesis, notice that a sparse vegetation layer would afford enough penetration at X-band as to 

increase dramatically volume decorrelation. In contrast, for a dense homogeneous forest, such as  the 

swamp, only a thin layer of the top canopy would be interested in volume decorrelation, thus yielding 

high values of coherence. The low values of coherence in this area are also matched by low RCS 

value. This situation calls for scattering elements properties in the vegetation layer where absorption 

dominates over scattering. 

 

Lowland forest presents coherence which is lower than all the other classes apart at t2 where it is 

slightly above coherence for class grassland and the two cases where the class agriculture presents very 

low coherence at t5 and t6. Lower coherence for lowland forest is to be expected, because of the 

spatial modulation of  the amount of scatters in the volume (emergent trees, several competing 

species), which causes decorrelation of the signal. Instead, swamp forest has a much more 

homogeneous canopy cover with smaller tree crowns and therefore, coherence is almost always higher 

compared to other classes. An exception is date t5, where class grassland presents the highest 

coherence values. At this point in time, the area of class grassland could have been cleared for 

agriculture purposes and thus gives rise to lower coherence values (0.92). 
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Figure 5. TanDEM-X coherence (R= 12/2012, G= 12/2013 and B= 05/2014) for four 15 x 15 pixel 

AOI. (a) agriculture; (b) lowland forest; (c) swamp forest and (d) grassland. 

(a) Agriculture 

 

(b) Lowland Forest 

 

(c) Swamp Forest 

 

(d) Grassland 

 

 

 

Figure 6. TanDEM-X coherence trajectory from December 5th, 2012 to May 6th, 2014 for (a) 

agriculture (red); (b) lowland forest (green); (c) swamp forest (blue) and (d) grassland (black). 

 

 

4. Conclusions  

Results indicated that the use of multi-temporal pixel trajectories in InSAR imagery is a useful tool to 

follow the evolution of natural targets. However, it is important to distinguish between natural changes 

due to seasonality and environmental conditions (e.g. rainfall), as in the case of results provided for 

lowland tropical forest and swamp forest, and changes due to anthropogenic disturbance (conversion 

from forest to non-forest). It was found that the features are able to characterize for instance the 

conversion from forest to non-forest (deforestation) for agriculture purposes. The slope of the linear 

trend indicates the magnitude of the change and whether the trend is positive (vegetation regrowth) or 

negative trend (deforestation). The analysis will be extended in particular to look at areas which 

present a negative trend as a means to provide estimates of deforestation.  
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