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Abstract: Two new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from 

indole were prepared in good yields through condensation of 5-methyl-1H-indole-3-

carbaldehyde with the acceptor precursors 2-(2,6-dimethyl-4H-pyran-4-

ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-

2-thiobarbituric (2), in the presence of a catalytic amount of piperidine. These building 

blocks were prepared by Knoevenagel condensation of the corresponding ketone 

precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new 

compounds were completely characterized by the usual spectroscopic techniques (UV-

vis., FT-IR and multinuclear NMR - 1H, 13C). 
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1. Introduction 

The development of organic materials displaying high two-photon absorption (TPA)[1] 

has attracted much attention in recent years due to a variety of potential applications in 

photonics and optoelectronics, such as three-dimensional optical data storage, 

fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, 

photodynamic therapy, upconverted lasing, etc.[1b, 2] In view of biological applications, 

such as in vivo imaging, the advantages of a two-photon process play an important role 

as it leads to finer resolution and better in-depth tissue penetration, combined with 

reduced cell damage. As a consequence, two-photon microscopy experiences as an 

increasing popularity.[2c, 2d] The most frequently employed structural motifs for TPA 

materials are donor–π bridge–acceptor (D–π–A) dipoles, donor–π bridge–donor (D–π–D) 
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and acceptor–π bridge–acceptor (A–π–A) quadrupoles, octupoles, etc.[2a, 3] In particular, 

extended π-conjugated systems symmetrically substituted with electron-donating (D) 

and/or electron-accepting (A) functionalities have been revealed as efficient TPA dyes. 

On the basis of this general setting, many factors are relevant in increasing delta TPA, 

such as the efficiency of intramolecular charge transfer (ICT), the conjugation length, the 

molecular planarity, the dimensionality of the charge-transfer network, and the donating 

and withdrawing abilities of the electron donor and acceptor.[4]  

In this work we present the synthesis and photophysical characterization of quadrupolar 

heterocyclic systems with potential application in materials and biological sciences as 

TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic 

systems for several optoelectronic applications (chemosensors, nonlinear optical, 

OLEDs) due to its photophysical properties and donor electron ability[5] and 4H-pyran-4-

ylidene fragment is frequently used for the synthesis of red light-emitting materials.[6] On 

the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-

dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used 

as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull 

type. 

Recently our research group has reported experimental and theoretical results concerning 

the synthesis and characterization of the optical properties of a large variety of 

functionalized heterocyclic systems with different optoelectronic applications such as 

OLEDs, second-order nonlinear optical chromophores, photochromic materials, etc.[7] 

Accordingly and as part of our continuing interest in developing chromophores for several 

optical applications, we report here the synthesis and characterization of two new 

derivatives of pyran-containing fluorophores 3a-b of the type D–π–A–π–D bearing an 

indole donor system and two different acceptor moieties. 

 

2. Experimental 

2.1 Instruments 

NMR spectra were obtained on a Varian Unity Plus Spectrometer at an operating 

frequency of 300 MHz for 1H and 75.4 MHz for 13C or a Brucker Avance III 400 at an 

operating frequency of 400 MHz for 1H and 100.6 MHz for 13C using the solvent peak as 

internal reference at 25 ºC ( relative to TMS). All chemical shifts are given in Hz. 

Assignments were made by comparison of chemical shift, peak multiplicities and J values 

and were supported by spin decoupling-double resonance and bidimensional 
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heteronuclear HMBC and HMQC correlation techniques. IR spectra were determined on 

a BOMEM MB 104 spectrophotometer. UV-Visible absorption spectra (200-800 nm) 

were obtained using a Shimadzu UV/2501PC spectrophotometer. All melting points were 

measured on a Gallenkamp melting point apparatus. 2,6-(Dimethyl-4H-pyran-4-

ylidene)malononitrile (1) was synthesized through the procedure described elsewhere.[6c] 

Other chemicals were common commercial grade and were used as received. 

 

2.2 Synthesis of 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-

thiobarbituric acid (2) 

2,6-Dimethyl-γ-pyrone (8 mmol, 1.00 g) and 1,3-diethyl-2-thiobarbituric acid (12 mmol, 

1.68 g) were dissolved in 10 mL of acetic anhydride and stirred for 2 h under heating at 

reflux. After cooling, the reaction mixture was poured into ice water. The precipitate was 

filtered and recrystallized from ethanol. Compound 2 was obtained as orange needles in 

83% yield (8 mmol, 2.00 g). 1H NMR (400 MHz, CDCl3, ppm):  1.30–1.34 (t, 6H, 2× 

CH3), 2.47 (s, 6H, 2× CH3), 4.56–4.61 (s, 6H, 2× CH3), 8.83 (s, 2H, 2x CH). 

 

2.3 General procedure for the synthesis of 4H-pyran-4-ylidene derivatives (3a-b) 

5-Methyl-1H-indole-3-carbaldehyde (0.16 mmol), 4H-pyran-4-ylidene precursors (1-2) 

(2 equiv, 0.32 mmol), and 2 drops of piperidine in 5 mL of dry acetonitrile were heated 

at reflux under nitrogen for 24 h with a Dean-Stark apparatus. The reaction mixture was 

cooled to room temperature. The yellow precipitate was filtered and washed with 10 mL 

of acetonitrile. The crude products were purified by recrystallization from methanol.  

 

2-(2,6-Bis(2-(5’-methyl-1’H-indol-3’-yl)vinyl)-4H-pyran-4-ylidene)malononitrile (3a).  

Compound 3a was obtained as a dark red solid (53 mg, 58 %). Mp > 300 ºC.  1H NMR 

(400 MHz, DMSO-d6, ppm):  2.48 (s, 6H, 2× CH3), 6.85 (s, 2H, 2× H-3), 7.06 (dd, 2H, 

J= 8.4 and 1.2 Hz, 2× H-6’), 7.12 (d, 2H, J= 16 Hz, 2× Hβ), 7.37 (d, 2H, J= 8.4 Hz, 2× 

H-7’), 1.94–8.00 (m, 6H, 2× (H-2’, Hα and H-4’)), 11.75 (s, 2H, 2× NH). 13C NMR (400 

MHz, DMSO-d6, ppm):  21.3, 52.3, 104.1, 112.0, 112.2, 112.9, 116.8, 120.5, 124.2, 

124.8, 129.9, 132.8, 132.9, 135.9, 156.3, 160.5. λmax (THF) 450 nm. IR (nujol): υ 3277 

(NH), 2205 (CN), 1629, 1298, 1198, 1187, 1132, 947 cm-1.  
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5-(2,6-Bis(2-(5’-methyl-1’H-indol-3’-yl)vinyl)-4H-pyran-4-ylidene)-1,3-diethyl-

dihydro-2-thioxopyrimidine-4,6(1H,5H)-dione (3b).  

Compound 3b was obtained as a dark purple solid (60 mg, 64 %). %). Mp > 300 ºC. 1H 

NMR (400 MHz, DMSO-d6, ppm):  1.20–1.24 (t, 6H, 2× CH3), 2.49 (s, 6H, 2× CH3), 

4.46–4.51 (q, 4H, 2× CH2), 7.06–7.12 (m, 4H, 2× (Hβ and H-6’)), 7.37 (d, 2H, J= 8.4 Hz, 

2× H-7’), 8.00 (s, 2H, 2× H-2’), 8.05–8.09 (m, 4H, 2× (Hα and H-4’)), 8.76 (s, 2H, 2× H-

3), 11.82 (s, 2H, 2× NH). 13C NMR (400 MHz, DMSO-d6, ppm):  12.4, 21.3, 42.4, 94.1, 

110.6, 112.1, 112.9, 113.1, 120.3, 124.4, 125.0, 130.2, 133.0, 133.6, 135.9, 156.6, 160.6, 

162.7, 176.4. λmax (THF) 497 nm. IR (nujol): υ 3283 (NH), 1661, 1612 (C=O), 1589, 

1517, 1291, 1253, 1208, 1109, 956, 874, 796 cm-1.  

 

3. Results and discussion 

3.1. Synthesis  

The synthesis of 4H-pyran-4-ylidene D–π–A–π–D type fluorophores (3a-b) with two 

electron donor fragments was achieved in two steps: (i) addition of an electron acceptor 

fragment to the backbone by condensation reaction of 4H-pyran-4-one derivative with 

the active methylene group followed by (ii) condensation of the (hetero)aromatic 

aldehyde (donor part) with the acceptor moiety previously prepared (Scheme 1, Table 1).  

 

 

Scheme 1. Synthesis of 4H-pyran-4-ylidene derivatives (3a-b). 
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Therefore, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-

dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric acid (2) were synthesized 

by Knoevenagel condensation reaction of the corresponding ketone precursors with 

malononitrile or with 1,3-diethyl-dihydro-2-thiobarbituric acid. Then, 4H-pyran-4-

ylidene fluorophores (3a-b) bearing indole as donor segment were prepared in moderate 

to good yields (58–64%) through condensation of 5-methyl-1H-indole-3-carbaldehyde 

with (1-2) in the presence of a catalytic amount of piperidine.  

 

Table 1. Yields, UV-visible (in THF) and IR data for compounds (3a-b). 

Comp. Yield (%) 
Reaction 

time (h) 

IR  

(cm-1) 

UV-Vis 

max (nm)         log  

3a 58 1 3277 (NH) 

2205 (CN) 

450 4.34 

3b 64 6 3282 (NH) 

1612 (C=O) 

497 4.28 

 

 

3.2. UV-vis study 

The UV-visible spectra of derivatives (3a-b) were recorded in tetrahydrofuran (10-4 M). 

Both chromophores exhibited broad and intense CT absorptions in the visible region at 

450 nm and 495 nm, respectively. The position of this band was strongly influenced by 

the electronic nature of different acceptor group linked to the 4H-pyran-4-ylidene moiety. 

Therefore, chromophore (3b), bearing the stronger thiobarbituric acceptor group linked 

to the 4H-pyran-4-ylidene fragment, showed a marked red shift in its charge transfer (CT) 

band (497 nm) compared with the corresponding malononitrile derivative (3a) (450 nm) 

(Table 1, Figure 1). 
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Fig. 1- Absorption spectra of 4H-pyran-4-ylidene derivatives (3a-b) in tetrahydrofuran at 

room temperature. 

 

3.3. 1H NMR analysis 

The electronic nature of the acceptor groups has a clear influence on the 1H NMR data of 

compounds (3a-b). For example, compound (3a) bearing a malononitrile acceptor moiety 

exhibited signals that are shifted upfield relative to the corresponding compound (3b)  

indicating the stronger acceptor ability of the thiobarbituric acceptor moiety when 

compared to the malononitrile group.  

The most characteristic signals in the 1H NMR spectra of 4H-pyran-4-ylidene derivatives 

(3a-b) are the singlets corresponding to the H-3 protons (6.86–8.76 ppm) and the signals 

of the indole NH, which were found between 11.75–11.82 ppm (Table 2). 

The UV-Vis absorption data for compounds (3a-b) bearing malononitrile and 

thiobarbituric acid moieties reflected a charge separation in the ground state, confirming 

their push-pull character with a significant intramolecular charge transfer (ICT) from the 

donor indole heterocycle to the acceptor groups and a high polarizability of the whole 

donor-acceptor derivatives. This observation can be supported by the 1H NMR chemical 

shifts data in these push-pull systems, as the chemical shifts of the protons in compound 

(3b)  (bearing a stronger acceptor group linked to the 4H-pyran-4-ylidene spacer) 

exhibited signals that are downfield relative to compound (3a). 

 

Table 2. Chemical shifts of protons of compounds (3a-b) in DMSO-d6 at 400 MHz, in 

ppm. 
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Comp. Hα Hβ NH H-3 H-2’ 

3a 7.96 7.12 11.75 6.86 7.98 

3b 8.07 7.10 11.82 8.76 8.00 

 

 

4. Conclusions 

New indole-based heterocyclic systems (3a-b) with a 4H-pyran-4-ylidene spacer 

functionalized with different acceptor moieties were synthesized in moderate to good 

yields using simple experimental procedures.  

Modulation of the electronic and optical properties of compounds (3a-b) was achieved 

through the variation of the electronic acceptor ability of the 4H-pyran-4-ylidene 

precursor. Due to their push-pull character and marked acidity of NH protons, the new π-

conjugated indole-based heterocyclic systems could have potential application in 

materials and biological sciences as TPA chromophores and/or as colorimetric 

chemosensors. 
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