Synthesis of azepino[4,5-*b*]indol-4-ones by Ugi-type / free radical cyclization and in vitro studies as 5-Ht₆R ligands

Alejandro Islas-Jácome, Ángel Rentería-Gómez and Rocío Gámez-Montaño*

Summary

A series of novel 3-amide-azepino[4,5-b]indol-4-ones and 3-tetrazolyl-azepino[4,5-b]indol-4-ones were synthesized by Ugi-type / free radical cyclization in moderate to good yields. All products were tested in vitro for their binding properties on the 5-Ht₆R protein.

Introduction

Azepino[4,5-b]indol-4-one is the core of various naturally occurring products such as the malassezindoles (**1a-1b**),¹ Fig. 1.

Fig. 1. malassezindoles.

Several stepwise methodologies toward azepino[4,5-*b*]indol-4-ones have been reported in which the last step has been the construction of the seven-membered ring, for example via S_EAr , Pd-catalyzed alkyne arylations, lactamizations, photocyclizations, or free radical cyclizations.

On the other side, tetrazoles are the core of various valued drugs such as the losartan, which exhibits a vasorelaxant activity acting as angiotensin II receptor antagonist. 5-substituted-1H-tetrazoles behave as metabolism resistant bioisosters of carboxylic acids as a result of their similar physicochemical properties such as the ability to present similar tautomeric forms. Several reports describe the preparation of compounds having the 1,5-DS-1H-T ring, mainly based on either, [2+3] dipolar cycloadditions between azides and cyanides,² or via Ugi-azide reaction.³

Results and discussion

The two series of azepino[4,5-b]indol-4-ones were successfully synthesized in moderate yields (52-90%) and (40-83%), respectively (Scheme 1). It is noteworthy that variations of yields depend little on the stereo-electronic nature of the isocyanide used as starting reagent.

Scheme 1. Synthesis of azepino[4,5-b]indol-4-ones

The main hypothesis in this work was that the 3-tetrazolyl-azepino[4,5-b]indol-4-ones T-Az and the 3-amide-azepino[4,5-b]indol-4-ones A-Az will show binding affinity on the 5-Ht₆R⁴ (Table 1).

R ¹	\mathbb{R}^2	Binding affinity ^a	
		T-Az	A-Az
4-CIPh	t-Bu	11 ± 3	42 ± 3
4-CIPh	Cy	17±3	15 ± 4
4-CIPh	2,6-MePh	19 ± 2	21 ± 2
4-BrPh	t-Bu	57±2	66 ± 4
2,3-OMePh	t-Bu	16 ± 3	-
Piperonyl	t-Bu	12 ± 2	07±1
4-(Me)2NPh	t-Bu	01 ± 1	16 ± 1
Cy	t-Bu	02 ± 1	10 ± 2
Cy	2,6-MePh	03 ± 2	07±3
Methiothepin ^b		~ 100	

Table 1. Binding affinity *in vitro* of the 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones T-Az and the 3-acetamide-azepino[4,5-b]indol-4-ones A-Az on the 5-Ht₆R.

All products were fully characterized by spectroscopic techniques such as NMR, HRMS and IR. Compound **T-Az-3** ($R^1 = Cl$; $R^2 = 2,6$ -MePh) was crystallized and could be analyzed by X-ray (ORTEP)⁵ (Fig. 2).

Fig. 2 ORTEP of compound T-Az-3

References

[1] K. Zuther, P. Mayser, U. Hettwer, W. Wu, P. Spiteller, B. L. J. Kindler, P. Karlovsky, C. W. Basse and J. Schirawski, *Mol. Microbiol.*, 2008, **68**, 152.

[3] (a) F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, *J. Am. Chem. Soc.*, 2002, **124**, 12210; (b) M. Aldhoun, A. Massi and A. Dondoni, *J. Org. Chem.*, 2008, **73**, 9565.

[3] *Reviews:* L. El Kaim and L. Grimaud, *Tetrahedron*, 2009, **65**, 2153; (b) S. Bräse, C. Gil, K. Knepper and V. Zimmermann, *Angew. Chem. Int. Ed.*, 2005, **44**, 5188; E. F. V. Scriven, *Chem. Rev.*, 1988, **88**, 297.

[4] R. E. Gordillo Cruz, A. Rentería-Gómez, A. Islas-Jácome, C. J. Cortes-Garcia, E. Díaz-Cervantes, J. Robles, R. Gámez-Montaño *Org. Biomol. Chem.*, 2013, 11, 6470.

[5] Cambridge Crystallographic Data Code: 948622