STRUCTURE-REACTIVITY RELATIONSHIPS AND THE POSITIVE STERIC EFFECT OF ORTHO SUBSTITUENTS IN ARENESULFONYL CHLORIDES

<u>Mykyta Iazykov ^{a,b}</u>, Moisés Canle L.,^b J. Arturo Santaballa,^b Ludmila Rublova^a

^aDept. of General Chemistry. Faculty of Ecology and Chemical Technology.Donetsk National Technical University, Ave. Bogdana Khmelnitskogo 106. 83015 Donetsk, Ukraine

^bChemical Reactivity & Photoreactivity Group, Dept. of Physical Chemistry & Chemical Engineering. Faculty of Sciences & Center for Advanced Scientific Research (CICA). University of A Coruña. E-15071 A Coruña, Spain.

Alcoholysis of arenesulfonyl chlorides

R= Me-, Et-, Pr-; *i*-Pr-

X= 4-Me-; H-;4-Br-; 2,4,6-*i*-Pr₃-; 2,6-Me₂-4-*t*-Bu-;

2,4,6-Me₃-; 2,3,5,6-Me₄-; 2,4,6-Me₃-3-NO₂-

Observed rate constants for alcoholysis of arenesulfonyl chlorides at 313K

X -	$k_{obs} \cdot 10^4 / s^{-1}$			
	МеОН	EtOH	PrOH	<i>i</i> -PrOH
4-Me-	3.80±0.02	0.82±0.01	0.506 ± 0.002	0.066 ± 0.008
H-	3.76±0.01	0.91±0.01	0.488 ± 0.003	0.08±0.01
4-Br-	3.24 ± 0.02	0.67±0.01	0.450 ± 0.007	0.099±0.001
2,4,6- <i>i</i> -Pr ₃ -	$7.94{\pm}0.04$	1.16±0.01	0.684 ± 0.001	0.070 ± 0.005
2,6-Me ₂ -4- <i>t</i> -Bu-	28.1±0.2	5.70 ± 0.80	3.43±0.01	0.47 ± 0.01
2,4,6-Me ₃ -	29.1±0.2	4.99±0.02	3.03±0.01	$0.44{\pm}0.01$
2,3,5,6-Me ₄ -	20.1±0.1	4.05 ± 0.05	1.96 ± 0.01	0.31±0.01
2,4,6-Me ₃ -3-NO ₂ -	12.8±0.2	2.76±0.01	2.00±0.02	0.38±0.03

X-ray structures of some derivatives of hindered arenesulfonic compounds.

 $\begin{array}{ll} 2.30 < l_{(O1\cdots H1)}, \ [\text{\AA}] < 2.70 & 2.36 < l_{(O2\cdots H3)}, \ [\text{\AA}] < 2.59 \\ 2.48 < l_{(O1\cdots H2)}, \ [\text{\AA}] < 2.66 & 2.57 < l_{(O2\cdots H4)}, \ [\text{\AA}] < 3.80 \\ \end{array}$ Weak intramolecular C-H···O interaction.

Frontal nucleophilic attack at the hindered reaction center during arenesulfonyl chloride methanolysis

Conclusions

□ In methanol, ethanol, propanol an increase of electron withdrawing effect of -X in unhindered compounds leads to lower reactivity, contrary to the prediction for typical S_N2 reactions. The kinetics of neutral *iso*-propanolysis of aromatic sulfonyl chlorides has shown the opposite tendency relative to unbranched alcohols.

□ Sterically-hindered compounds (X=2,4,6-Me₃-; 2,6-Me₂-4-*t*-Bu-; 2,3,5,6-Me₄-; 2,4,6-Me₃-3-NO₂-) show anomalous acceleration of the solvolysis reaction rate for all alcohols.

□ X-ray analysis shown that the distance between the hydrogen atom of the *o*-alkyl group and the nearest oxygen of the sulfonyl group, $l_{(O \cdots H)}$, is comparable to the length of typical hydrogen bonds (2.30-2.70 Å), *i.e.* weak intramolecular (C-H···O) interaction.

 \Box *o*-alkyl groups limit the backside approach of the nucleophile whereby creating preconditions for a frontal attack on the sulfur atom, that may be the possible reason of the positive steric effect.

