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Abstract. Hypertension is a multifactorial disease in which blood vessels are extensively exposed to a higher 

voltage than usual, this tension endures more strain on the heart leading to greater cardiac output to pump blood 

to the body. Hypertension is classified by the World Health Organization (WHO) as one of the main risk factors 

for disability and premature death in the world population. WHO has strengthened various health services around 

the world, listing the groups of basic medicines for high blood pressure such as: angiotensin-converting enzyme 

inhibitors, thiazide diuretics, beta blockers, long-acting calcium channel blockers, among other groups for drug 

treatment to the population with this condition. The discovery of new drugs with better activity and less toxicity 

for the treatment of Hypertension is a goal of the major importance. In this sense, theoretical models as QSAR 

can be useful to discover new drugs for hypertension treatment. For this reason, we developed a new multi-target-

QSAR (mt-QSAR) model to discover new drugs. A public databases ChEMBL contain Big Data sets of multi-

target assays of inhibitors of a group of receptors with special relevance in Hypertension was used. However, 

almost all the computational models known focus in only one target or receptor. In this work, Beta-2 adrenergic 

receptor, Adrenergic receptor beta, Type-1 angiotensin II receptor, Angiotensin-converting enzyme, Beta-

adrenergic receptor, Cytochrome P450 11B2 and Renin were used as receptor inputs in the model. An ANN is 

our statistical analysis. In that way, we used as input Topological Indices, in specific Wiener, Barabasi and Harary 

indices calculated by Dragon software. These operators quantify the deviations of the structure of one drug from 

the expected values for all drugs assayed in different boundary conditions such as type of receptor, type of assay, 

type of target, target mapping. Overall training performance was 90%. Overall Validation predictability 

performance was 90%. 
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1. INTRODUCTION 

Hypertension is a multifactorial disease in which blood vessels are extensively exposed to a higher voltage 

than usual, this tension endures more strain on the heart leading to greater cardiac output to pump blood to the 

body. Hypertension is classified by the World Health Organization (WHO) as one of the main risk factors for 

disability and premature death in the world population. WHO has strengthened various health services around 

the world, listing the groups of basic medicines for high blood pressure such as: angiotensin-converting enzyme 

inhibitors, thiazide diuretics, beta blockers, long-acting calcium channel blockers, among other groups drug 

treatment (1, 2). As said before, the field in the research of better hypertension treatments is getting bigger as 

time passes. Bioinformatics is an area that has been widely used in these researches, making it as one of the most 

important fields. Basing on Bioinformatics, there exists a multi-target model (mt) where by a big and 

heterogeneous database of several compounds is designed. In this model, the compounds are categorized as being 

active or inactive. Form these molecules, a portion of them were obtain in order to calculate there was a positive 

relationship (3). 

In this study, some proteins that were found to be related to hypertension and used in this mt-QSAR are 

Beta-2 adrenergic receptor, Adrenergic receptor beta, Type-1 angiotensin II receptor, Angiotensin-converting 

enzyme, Beta-adrenergic receptor, Cytochrome P450 11B2 and Renin were used as receptors inputs in the model. 

The design of new enzyme inhibitors for the treatment of hypertension creates a main objective. From our point 

of view, QSAR techniques may be very helpful in this case. Unfortunately, some QSAR techniques predict new 
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outcomes only for one specific condition. We can avoid this by developing a new Multi-target/Multiplexing 

QSAR models. These approaches are useful to process very large collections of compounds assayed against 

multiple molecular or cellular targets under different assay conditions (cj) as is the case of ChEMBL (4, 5). QSAR 

models can foretell the results of the assay of different drugs for multiple targets. One compound may lead to 1 

or more statistical cases because it may give different outcomes (statistical cases) for alternative biological assays 

carried out in diverse sets of multiple conditions. In this work, we defined cj according to the ontology rt => (au, 

cj, rt, te, sx). The different conditions that may change in the dataset are: receptors (rt), biological assays (au), 

molecular or cellular targets (te), or standard type of activity measure (sx). Notably, multi-target QSAR models 

are able to predict the results of the assay of different drugs for multiple targets. However, QSAR models cannot 

foretell diverse results for a given sequence of targets when changed under a set of definite assay, organism, 

targets and assay type conditions for each target. Fortunately, the new mt-QSAR is not only useful for different 

targets but also to different multiplexing assay conditions (cj) for all targets. Definitely, we have stated the first 

QSAR model for multiplexing assays of anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity (6-

15).  

QSAR methods are related on the use of molecular descriptors, which are known as mathematical sequence that 

codify useful chemical data and enable associations between statistical and biological properties (16, 17).  A 

diverse topological indices (TIs) of molecular graphs (G) can be used to speed up the procedure of codification 

of the molecular arrangement of drugs in Bioinformatics studies. By the first time we used TI molecular 

descriptors developed by Wiener, Barabasi and Harary indices to develop one multi-target/multiplexing QSAR 

model for inhibitors of 7 different enzymes relates to hypertension.  

 

2. MATERIALS AND METHODS 

2.1 Nonlinear classifiers 

A database from ChEMBL database (18) containing assayed anti-hypertension drugs was used to conduct this 

experiment. The DRAGON software 4.0 (19) was utilized and provided 1664 descriptors classified as zero- (0D) 

one- (1D), two- (2D) and three-dimensional (3D) descriptors depending on the fact that they are computed from 

the chemical formula, substructure list representation, molecular graph or geometrical representation of the 

molecule, respectively (20). In this research, the following descriptors were calculated: Wiener, Barabasi and 

Harary indices. The data was processed with different Artificial Neural Networks (ANNs) using the 

STATISTICA 6.0 software (21) looking for the better model to predict anti-hypertension activity. Five types of 

ANNs were used, namely, Probabilistic Neural Network (PNN), Radial Basis Function (RBF), Three Layers 

Perceptron (MLP-3), and Four Layer Perceptron (MLP-4) and Linear (LNN) (22-27).  

A very simple type of ANN called Four Layer Perceptron (MLP-4) can be used to fit this discriminant function. 

The model deals with the classification of a compound set with or without affinity of different receptors. A 

dummy variable Affinity Class (AC) was used as input to codify the affinity. This variable indicates either high 

(AC = 1) or low (AC = 0) affinity of the drug of the receptor. S(DTP)pred or DTP affinity predicted score is the 

output of the model and it is a continuous dimensionless score that sorts compounds from low to high affinity to 

the target coinciding DTPs with higher values of S(DTP)pred and nDTPs with lowest values. A Forward Stepwise 

algorithm was used for a variable selection (28). 

Let kχ(G) be drugs molecular descriptors and kξ(R) receptor or drug target descriptors for different drugs (d) 

with different receptor; the group attempted to develop a simple linear classifier of mt-QSAR type with the 

general formula: 
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The quality of models was assessed with different statistical parameters like Specificity (see Equation 2), 

Sensitivity (see Equation 3), Accuracy (see Equation 4) and ROC curve (Receiver Operating Characteristic curve) 

which is a graphical plot of the sensitivity, or true positives, vs. (1−specificity), or false positives, 
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Where NTN means number of true negatives, NFP is the number of false positives, NTP is the number of true 

positives, NFN is the number of false negatives, FN is false negatives, FP is false positives and TN is true 

negatives. 

The data set used in this article was obtained from ChEMBL database (29-33). It has more than 11000 cases 

and more than 6500 different compounds. ChEMBL normalizes the bioactivities into a uniform set of endpoints 

and units where possible, and also tags the links between a molecular target and a published assay with a set of 

varying confidence levels. The data is abstracted and curated from primary scientific literature, and covers a 

significant fraction of the structure activity relationship (SAR) and discovery of modern drugs. 

 

3. RESULTS AND DISCUSSION 

3.1. ANN Multi-target model of drug-hypertension receptor interaction.  

The ANN models are non-linear models used to predict the biological activity of a large dataset of molecules. 

This technique is an alternative to linear methods such as LDA (34, 35). However, one must note that the profiles 

of each network indicate that these are highly nonlinear and complicated models. Different types of networks 

were compared to obtain a better model; Table 1 shows the classification matrix of the ANN network. MLP 42: 

42-27-1:1 was taken as the main network because it presented a wider range of variables, 42 inputs in the first 

layer and 27 neurons in the second layer, and two sets of cases (Training and Validation).  The network found 

was MLP and it showed a training performance higher than 89.9%. The best model correctly classifies 667 out 

of 794 active compounds (84.00 %) and 2971 out of 3251 non-active compounds (91.39 %) in the training series. 

Overall training performance was 89.94%. Validation of the model was carried out by means of external 

predicting series, the validation correctly classifies 6083 out of 6733 non-active compounds (90.34%) and 1325 

out of 1527 active compounds (86.77%). Overall Validation predictability performance was 89.7%. The values 

of accuracy higher than 75% are acceptable for ANN models; according to previous reports (36-45).  

 

Table 1. Results of the MLP classification model 

Drug-Enzyme Training series Statistical 

interaction Positive Negative % Parameter 

Negative 280 2971 91.39 Sensitivity 

Positive 667 127 84.01 Specificity 

   89.94 Accuracy 

Drug-Enzyme External validation series Statistical 

interaction Positive Negative % Parameter 

Negative 650 6083 90.34 Sensitivity 

Positive 1325 202 86.77 Specificity 

   89.7 Accuracy 
a Sensitivity = Recall =  True Positive/(True Positive + False Negative);  

Specificity =True Negative / (True Negative + False Positive);  

Accuracy = Ac = True Total / Total = (True Positive + True Negative)/Total 

 

Notably, the model presented had a ROC curve higher than 0.5. The model presented an area greater than 0.9, 

see Figure 1. One compound may lead to 1 or more statistical cases because it may give different outcomes for 

alternative biological assays carried out in different organisms with different enzymes as targets (46). We used a 

big data from ChEMBL database, only using anti-hypertension drugs and the model have good results. It is the 
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first work on hypertension in the mt-QSAR is used within the model using different enzymes, assays, and types 

of proteins. 

 
Figure 1. ROC Curve for MLP predictor (red = train series, blue = validation series) 

 

4. CONCLUSION 

Theoretic mt-QSAR models based on ANN and Topological Indices descriptors may become a useful tool in 

design and development of new drugs with anti-hypertension activity. Drug-Protein interaction is a goal of major 

importance to discover a cure of hypertension. In this work, we developed a new MLP model using the Dragon 

descriptors, with a large data base using about 6000 different drugs obtained from the ChEMBL database. The 

use of different assays, organisms, targets and assay type conditions for each target involved in the model is a big 

advantage for seek the treatment and possible cure of hypertension more effective and less toxic drugs.  
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