

1st International Electronic Conference on Medicinal Chemistry

2-27 November 2015 chaired by Dr. Jean Jacques Vanden Eynde

Synthesis of aminated xanthones: exploiting chemical routes to reach for bioactive compounds

Emília Sousa^{1,2,*}, Agostinho Lemos^{1,}, Ana Gomes^{1,3}, Sara Cravo¹, Madalena Pinto^{1,2}

¹ Department of Chemical Sciences, Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Porto, Portugal;

² CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, Portugal; ² Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Portugal. **U**PORTO

* Corresponding author: esousa@ff.up.pt

sponsored by

pharmaceuticals

Synthesis of aminated xanthones: exploiting chemical routes to reach for bioactive compounds

Graphical Abstract

Abstract:

Typically, about 90% of drug candidates are N-containing, and an even higher amount are Ocontaining. As a consequence, it is not surprising that alkylation and arylation of groups with nitrogen and oxygen emerge as major reactions to obtain bioactive compounds. Xanthones are a class of O-heterocycles characterized by a dibenzo- γ -pyrone nucleus. This scaffold may be considered a "privileged structure" able of providing useful ligands for several types of receptors and/or enzymes targets by judicious structural modifications. In our search for potential anticancer drugs we pursuit with a hybridization approach of N-containing xanthones.

Herein, exploiting chemical routes to reach for bioactive N-containing xanthones with will be shared. The synthesis of new xanthone derivatives proceeds by both strategies and the respective strengths and weakness will be presented in a "medchem" perspective. Although chemical route (i) (SN2 reactions and nucleophilic aromatic substitutions) provided interesting antitumor derivatives, the reductive amination (ii) furnished a library of potential p53:MDM2 inhibitors with noticeable advantages such as: high-yield reactions, one-pot conversions, aliphatic amines with low potential to form reactive metabolites.

The use of a variety of (thio)xanthone building blocks, with various substituents, and different reaction conditions allowed us to develop a repertoire of N-transformations.

Keywords: Ullmann Coupling; Reductive Amination; Xanthones; Bioactive compouds

Introduction	hydrogen bonding properties R' R' R' R' R' R' R' C-N bond				
reaction	no. of reactions	% of all reactions			
N-acylation to amide	1165	16.0			
N-containing heterocycle formation	537	7.4			
N-arylation with Ar-X	458	6.3			
RCO ₂ H deprotection	395	5.4			
N-subs with alkyl-X	390	5.3			
reductive amination	386	5.3			
N-Boc deprotection	357	4.9			
Suzuki cross-coupling reaction	338	4.6			
O-substitution	319	4.4			
other NH deprotection	212	2.9			
total	4557	62.4			

*by Frequency in the 2008 Data Set, J. Med. Chem. 2011, 54, 3451–3479

Common approach of most medicinal chemistry programs

- synthesizing a common core motif
- performing multiple derivatizations of this core

Dibenzo-gamma-pirone

Pedro, M. M.; Cerqueira, F.; Sousa, M. E.; Nascimento, M. S. J.; Pinto, M. M. M. *Bioorg. Med. Chem.* 2002, *10*, 3725–3730.

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

useful structure-activity relationships (SAR)

	C R5		R2 R3	
R1	R2	R3	R4	R5
ОН	н	Н	Н	Н
Н	ОН	н	Н	Н
Н	Н	ОН	Н	Н
Н	Н	Н	ОН	Н
OCH₃	Н	Н	Н	Н
Н	OCH ₃	Н	Н	Н
Н	Н	OCH ₃	Н	Н
Н	Н	Н	OCH ₃	Н
OH	ОН	н	Н	Н
Н	ОН	ОН	Н	Н
Н	Н	OH	OH	Н
Н	Н	OCH ₃	ОН	Н
Н	Н	OH	OCH_3	Н
Н	Н	OH	Н	OH
Н	Н	OCH_3	Н	OCH ₃
Н	Н	OCH_3	Н	OH
OH	CH_3	OH	Н	Н
Н	OH	OH	OCH_3	Н
СНО	Н	OCH_3	OH	Н
Н	СНО	OH	OCH ₃	Н

Two projects of hit-to-lead optimization

1. Optimization of an antitumor thioxanthone

2. Optimization of a potent inhibitor of p53-MDM2 interaction

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

pharmaceuticals

Palmeira, A.; Vasconcelos, M. H.; Paiva, A.; Fernandes, M. X.; Pinto, M.; Sousa. E. Biochem. Pharmacol. 2012, 83, 57–68.

 \sim NR'R"

Results and discussion

	Amount of							
Catalyst	catalyst	Ligand	Base	Solvent	Yield (HPLC)		
					TXA1	TXOMe		/
Cu ₂ O	5% mol		K ₂ CO ₃	Methanol	trace		~	 .N
Cu(0)	5% mol		K ₂ CO ₃	Methanol	trace			.HCI
Cul	5% mol		K ₂ CO ₃	Methanol	26	1	HCI 37% Et ₂ O	
Cul	10% mol		K ₂ CO ₃	Methanol	55	11	$\xrightarrow{2}$	
Cul	5% mol		K ₂ CO ₃	Acetonitrile	trace		S S	
Cul	5% mol		K ₂ CO ₃	Isopropanol	trace		0	
Cul	5% mol		K ₂ CO ₃	Propanol	trace		TXA1.HCI	
Cul	5% mol		K ₂ CO ₃	NMP	trace		50% overall yield (~10g)
Cul	5% mol		K ₂ CO ₃	Water	trace			
Cul	5% mol		K ₂ CO ₃	Ethanol	12	2 (TXOEt)		
Cul	5% mol		K ₂ CO ₃	Formamide	trace			
Cul	5% mol		K ₂ CO ₃	neat	trace			
Cul	5% mol		Et ₃ N	neat	trace			
Cul	5% mol		K ₂ CO ₃	Ethylenoglycol	10			
Pd(dppf)Cl ₂ .CH ₂ Cl ₂	5% mol		K ₂ CO ₃	Methanol	trace		Buchwald-Hartwig	
Pd ₂ (dba) ₃ :BINAP	5% mol		tBuONa	Methanol	trace	n.d.	reaction	
Pd ₂ (dba) ₃ : BINAP	5% mol		CsCO ₃	Methanol	trace			
		Picolinic acid 20%						
Cul	5% mol	mol	K ₂ CO ₃	Methanol	trace			
		N,N-dimethylglicine						
Cul	5% mol	20% mol	K ₂ CO ₃	Methanol	43	4		
		N,N-dimethylglicine						
Cul	5% mol	20% mol	K ₂ CO ₃	neat	9			
		N,N-dimethylglicine						
Cul	5% mol	20% mol	K ₂ CO ₃	Ethylenoglycol	trace			
Cul +								
Montmorillonite K1	0 5% mol + 10eq		K ₂ CO ₂	Methanol	16	n.d.		10

2. Optimization of a potent inhibitor of p53-MDM2 interaction

Xanthone derivatives represent a priviliged scaffold for antitumor agents with the ability to activate p53 pathway

M. Leão, et al. Biochemical Pharmacology 2013, 85(9), 1234-1245. M. Leão, et al. Journal of Natural Products 2013, 76 (4), 774–778.

pharmaceuticals

2-27 November 2015

Obtaining the functionalized aldehyde was the 1st drawback for a rapid synthetic protocol

2-27 November 2015

Obtaining the functionalized aldehyde was the 1st drawback for a rapid synthetic protocol

LEM2

Table 1. Reaction yields (%) of thenew aminoxanthone derivatives*

a) MP-CNBH₃, CH₃COOH, CH₃OH, r.t., overnight b) STAB, CH₃COOH , THF, r.t., overnight

LEM2	Compounds	Yield (%)	Compounds	Yield (%)		
	ALX1	56	ALX5	40	Compounds	Yield (%)
	ALX2	57	ALX6	63	ALX9	35
	ALX3	70	ALX7	68	ALX10	36
	ALX4	41	ALX8	62	ALX11	58

MP-CNBH₃ = Solid-supported cyanoborohydride, STAB = Sodium triacetoxyborohydride, THF = tetrahydrofuran, r.t. = room temperature *Due to confidentiality issues, the compounds are not shown.

Conclusions

a variety of (thio)xanthone building blocks, pendent functionalities, and different reaction conditions allowed us to develop a repertoire of *N*-transformations

Importance the use of enabling techniques in synthesis

Acknowledgments

national funds from FCT—Fundação para a Ciência e a Tecnologia under the project CEQUIMED—PEst-OE/SAU/UI4040/2014 and ERDF through COMPETE and national funds from FCT, PEst-C/MAR/LA0015/2013.

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

UNIÃO EUROPEIA Fundo Social Europeu

Centro Interdisciplinar de Investigação Marinha e Ambiental

