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Abstract: We use a novel measure of shape complexity known as configurational entropy
to obtain stability bounds of various astrophysical objects. We apply the method to
Newtonian polytropes, neutron stars with an Oppenheimer-Volkoff equation of state, and
to self-gravitating configurations of complex scalar field (boson star) in ground and excited
states. The versatility of this method has also been tested on hydrogen atom in comparison
with boson stars. Configurational entropic measure locates critical stability regions obtained
from perturbation method with accuracy of a few percent or better.
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1. Introduction

Gravitational stability of compact astrophysical objects, whether a certain equilibrium configuration
is stable or not, has been a key issue in astrophysics and cosmology. To determine stability of
equilibrium state of an astrophysical object one adds perturbations to the equilibrium solution of field
configuration. For unstable equilibrium configurations, perturbations grows exponentially, leading to the
ultimate collapse of the star. In this paper, we propose a novel method to address gravitational stability
issue using a shape complexity measure called configurational entropy first brought up by Gleiser[1].
We would see that configurational entropic measure locates critical stability regions, originally obtained
via perturbation method, with accuracy higher than a few percent.

Before introducing configurational entropic measure, we review essential results from application
of perturbation method. One necessary but not sufficient condition of gravitational stability is that
gravitational binding energy of astrophysical objects needs to be negative definitive. Gravitational
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binding energy, or the internal energy of a star[2], is defined as the energy difference between an
ensemble of particles as a whole and the total energy of free particles if dispensed to infinity, i.e:

Eb = M −mN < 0, (1)

(c = h̄ = 1 throughout) where M is the total energy, N is the conservative charge and m is mass of
the particle. It is required that Eb < 0 for a stellar configuration to acquire stable equilibrium.

In this paper, we study stability of one-parameter series of stars, that is, stars obeying same
physics but with different central densities ρ(0) in each category (polytropes, neutrons and boson
stars). An equilibrium stellar configuration with constant chemical composition and entropy per nucleon
(isentropic) passes from stability to instability if only the following conditions are satisfied:[2]

∂E(ρ(0))

∂ρ(0)
= 0,

∂N(ρ(0))

∂ρ(0)
= 0;

(2)

where E is the total equilibrium energy and N is the nucleon number. Readers may refer to [2] and [3]
for more details.

In our cases, configurational entropy would peak at critical transition point indicated by energy or
nucleon number extrema.

2. Methods

2.1. Configurational Entropy

Since we are interested in self-gravitating configurations with spatially-localized energy, consider
the set of square-integrable bounded functions f(x) ∈ L2(R) and their Fourier transforms F (k).
Plancherel’s theorem states that: ∫ ∞

−∞
|f(x)|2ddx =

∫ ∞
−∞
|F (k)|2ddk. (3)

Now define the modal fraction f(k) [1],

f(k) =
|F (k)|2∫
|F (k)|2ddk

, (4)

where the integration is over all k where F (k) is defined and d is the number of spatial dimensions.
f(k) measures the relative weight of a given mode k. This can also be seen by noting that |F (k)|2

is proportional to the Fourier transform of the two-point correlation function of the function f(x),
and

∫∞
−∞ |F (k)|2ddk is the integrated power. For periodic functions where a Fourier series is defined,
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f(k)→ fn = |An|2/
∑
|An|2, where An is the coefficient of the n-th Fourier mode.

We define the configurational entropy SC [f ] as [1]

SC [f ] = −
∑

fn ln(fn), (5)

inspired by Shannon’s information entropy, SS = −
∑
pi log2 pi [4]. Note that when all N modes k

carry the same weight fn = 1/N , and the discrete configurational entropy has a maximum at SC = lnN .
If only one mode is present, SC = 0. These limits motivate the definition of Eq. 5.

For general, non-periodic functions in the continuous interval (a, b), the case of interest here, the
configurational entropy SC [f ] is [1]

SC [f ] = −
∫
f̃(k) ln[f̃(k)]ddk, (6)

where f̃(k) = f(k)/f(k)max and f(k)max is the maximum fraction, in many cases of interest given by
the zero mode, k = 0, or by the system’s longest physical mode, |kmin| = π/R. This normalization
guarantees that f̃(k) ≤ 1 for all physical values of k. We call σ(k) = −f̃(k) ln[f̃(k)] the configurational
entropy density. In this paper, we will compute the configuration entropy from the energy density ρ(r)

of the self-gravitating object. The task at hand is thus to solve the relevant Einstein’s equations to obtain
the equilibrium configurations in terms of ρ(r) and then use those to compute the CE as a function of
the star’s central density, ρ(r = 0) ≡ ρ0.

2.2. Conventions and Fundamental Equations

We consider static, spherically-symmetric configurations with spacetime metric,

ds2 = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2θdφ2), (7)

and take c = h̄ = 1. Einstein’s field equations are

Gµν = −8πGTµν , (8)

where Tµν is the energy-momentum tensor. For Newtonian polytropes and neutron stars, we will
model stellar matter as a perfect fluid with energy-momentum tensor

Tµν = p(r)gµν + [p(r) + ρ(r)]UµUν , (9)

where p(r) is the pressure, ρ(r) is the energy density and Uµ is the velocity four-vector. Taking
the star to be at rest, Uµ has only one non-zero component, U0 = −

√
B(r). For boson stars, the

energy-momentum tensor is computed from a Lagrangian density to be defined later. We use the energy
density to define the mass of the object as

M = 4π

∫ R

0

ρ(r)r2dr , (10)
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where the upper limit of the integration, R, is to the object’s radius R, where ρ(R) = 0. We would
like to specifically mention that for boson stars, ρ(r) → 0 at r → ∞. However, we would define the
effective radius within which most of the star’s mass is concentrated, as:

Reff ≡
∫∞

0
ρ(r)r3dr∫∞

0
ρ(r)r2dr

. (11)

With these definitions, Einstein’s equations can be written as:

1

A
(
A′

Ar
− 1

r2
) +

1

r2
= 8πGρ;

1

A
(
B′

Br
+

1

r2
)− 1

r2
= 8πGp;

B′

B
= − 2p′

p+ ρ
,

(12)

where a prime denotes derivative with respect to the radial direction. The last expression is the
equation for hydrostatic equilibrium, an expression of energy-momentum conservation.

We are interested here only in isentropic stars, that is, those with a constant entropy per particle
across the star. Such configurations model both very low temperature white dwarfs and neutron stars,
as well as boson stars, which are self-gravitating spin-0 boson-condensates. These equations, together
with an equation of state p(r) = p[ρ(r)], are used to study a large variety of self-gravitating objects,
assuming that A(0) = 1 and B(r → ∞) = 1. The equation involving A(r) and ρ(r) may be integrated
as A(r) = [1− 2GM(r)/r]−1, where the mass density function is given byM(r) ≡

∫ r
0

4πr′2ρ(r′)dr′.

3. Results and Discussion

3.1. Polytropes

Newtonian polytropes are obtained from the hydrostatic equation[2]:

d

dr

[
r2

ρ(r)

dp(r)

dr

]
= −4πGr2ρ(r). (13)

Eq. 13 is supplemented by a general polytropic equation of state

p = Kργ, (14)

where the constant K depends on the entropy per nucleon and chemical composition. γ is the
adiabatic index. Small mass, stable non-relativistic white dwarfs are well-modeled by γ = 5/3 and

K = h̄2

15meπ2

(
3π2

mNµ

)5/3

, where me(N) is the electron (nucleon) mass, and µ ∼ 2 is the number of

nucleons per electron. The largest mass white dwarfs are modeled by γ = 4/3 and K = h̄
12π2

(
3π2

mNµ

)4/3

,
the Chandrasekhar limit [2]. The binding energy for polytropes with Q nucleons, Ebind = M − QmN ,
can be written as E = − (3γ−4)

(5γ−6)
GM2

R
, where M is given by Eq. 10. There is a clear stability boundary at
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γ = 4/3 where E changes sign. We will show below that the configuration entropy captures the same
boundary.

Via transformation of variables, Eqs. 13 and 14 can be written as simpler Lane-Emden equation
whose solution can be obtained numerically as ordinary differential equation with boundry condition
ρ(0) = ρ0 and ρ′(0) = 0. The CE is computed from the energy density using Eq. 6. Since polytropes
have a finite radius (where ρ(R) = 0 or, equivalently, θ(ξR) = 0, with ξR ≡ R/α), the k-integration is
in the interval k ∈ [kmin = π/R,∞). This ensures that only modes with wavelengths smaller than the
polytrope contribute to the configurational entropy.

For polytropes, there exists a simple scaling relation between the stellar mass and its configurational
entropy. One can easily reach that:

Sρ−1
0 ∝M−1 ∝ ρ

(4−3γ)/2
0 . (15)

Note that at γ = 4/3 the quantity Sρ−1
0 is independent of ρ0, consistent with a boundary in the star’s

stability [2]: stars with γ < 4/3 are unstable, while stars with γ > 4/3 are stable. γ = 4/3 defines an
instability ridge for the family of stellar configurations.

In Fig. 1 we show the contour plot of the stellar mass as a function of ρ0 and γ, where the existence
of a saddle ridge at γ = 4/3 is clear. In Fig. 2 we show the contour plot of the quantity Sρ−1

0 as a
function of ρ0 and γ. The reader can verify that the shadings are approximately reversed for the two
plots, illustrating qualitatively the inverse scaling between mass and configurational entropy discussed
above.

We have already obtained results purely analytically for Newtonian configuration. We now have the
confidence to move on to general relativistic objects.

3.2. Neutron Stars

As we move into general-relativistic objects, we start with a simple but representative model, neutron
stars with an Oppenheimer-Volkoff (OV) equation of state, where neutrons are treated as a pure ideal
Fermi gas [5]. We are interested in how the effects of general relativity impacts stars’ stability. We
expect to locate the stability-instability transition point of OV neutron stars with various central densities
using configurational entropy.

An OV neutron stars is modeled by a gas of particles with rest mass µ0 obeying Fermi-Dirac statistics,
the related equation of state may be written in parametric form as [5]

ρ = K(sinh t− t)

p =
1

3
K(sinh t− 8 sinh

1

2
t+ 3t)

(16)
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Figure 1. Contour plot for mass of polytropes as a function of the central density ρ0/ρc and
polytropic index γ. There is an instability ridge–a saddle line–for γ = 4/3.
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Figure 2. Contour plot for the configurational entropy of polytropes as a function of the
central density ρ0/ρc and polytropic index γ. There is an instability ridge–a saddle line–for
γ = 4/3.



Entropy 2015, xx 8

where K = πµ4
0c

5/4h2 and

t = 4 log

 kF
µ0c

+

[
1 +

(
kF
µ0c

)2
]1/2

 , (17)

with kF being the maximum momentum in the Fermi distribution, related to the particle number density
n as n = k3

F/3π
2h̄3. Readers may refer to [6] for details.

We can now solve numerically Einstein’s equations with boundary conditions

u(r = 0) = 0; t(r = 0) = t0

u(r = rb) = ub; t(r = rb) = 0,
(18)

so that p(r = rb) = ρ(r = rb) = 0 and rb is the radius of the star and ub is its mass. Results are
thus parametrized in terms of t0, related to the star’s central density ρ0 by Eq. 16. In Fig. 3 we plot
the mass of the OV neutron star for values of the central density parameter ρ0. Stars with ρ0 > ρc are
perturbatively unstable to gravitational collapse.

Figure 3. OV neutron star mass vs. central density ρ0. Stars with ρ0 > ρc = 0.588 are
known to be unstable to gravitational collapse.

As with the Newtonian polytropes, we compute the configurational entropy using the energy density
of the equilibrium configurations. The range of integration is again kmin = π/R ≤ k < ∞, reflecting
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the fact that neutron stars have well-defined radii where ρ(R) = 0. The results are shown in Fig. 4,
where we can see that the quantity Sρ−1

0 has a minimum near (within 5.27%) the critical equilibrium
value of the central density where the stellar mass is a maximum. The inset shows the results in more
detail near the CE minimum. We can translate this value of ρ to an equivalent critical mass, thus
establishing an upper bound in the critical OV neutron star mass with accuracy of 0.58%. As with
Newtonian polytropes, the configurational entropy is multiplied by the inverse central density so as to
have a quantity that scales with dimensions of inverse mass.

Figure 4. Configurational entropy times ρ−1
0 for the OV neutron star vs. central density ρ0.

Stars with ρ0 > ρc = 0.588 are known to be unstable to gravitational collapse. The inset
shows the result near the minimum.

The reader should not confuse the previous results for Newtonian polytropes, where the prediction
for the Chandrasekhar mass was given at the maximum of the CE with respect to the polytropic index
γ, with the results here, where the upper-bound for the critical mass comes at the minimum of the CE
with respect to central density ρ0. The OV equation of state is only well-modeled by a polytrope in
the non-relativistic limit for neutrons, with γ = 5/3, where the star’s mass is a monotonic function
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of ρ0. The maximum mass in the mass vs. central density plot appears only when general relativistic
effects are included, beyond the Newtonian approximation. We can thus see, from Fig. 4, that the
configurational entropy is a reliable measure of the stability of OV neutron stars, providing an upper
bound for the critical mass.

3.3. Boson Stars

Boson stars (BS) are hypothetical astrophysical soliton-type objects modeled by free or
self-interacting massive complex scalar field carrying U(1) symmetry. While stars composed of
Fermions such as white dwarfs or neutron stars are kept from gravitational collapse by Pauli’s exclusion
principle, boson stars are supported by pressure given by Heisenberg’s uncertainty principle. Kaup[7],
Ruffini and Bonazolla [8] first studied boson stars as self-gravitating particles. Relativistic treatment
has found the critical mass 0.633M2

pl/m and total particle number 0.653M2
pl/m

2 of free boson
condensate (also called mini-boson star) in ground state. Colpi, Shapiro and Wasserman [9] later
introduce a self-repulsive potential λ|Φ|4 which leads to star mass the order of M3

pl/m
2 and particle

number M3
p l/m

3. The mass and particle number scales now are of the same order of magnitude of
normal Fermion stars. In this section, we will briefly review the general formalism of boson stars and
demonstrate how configurational-entropic method can locate boson star stability to instability transition
point with an accuracy of a few percent.

3.3.1. Formalism

For completeness, we briefly review the essential formalism to find boson stars. Consider the action:

S =

∫
d4x
√
−g{ R

16πG
+ L}, (19)

and Lagrangian density,

L = gµν∂µφ∂νφ
∗ −m2|φ|2 − λ

4
|φ|4. (20)

Assuming spherical symmetry, we write the complex scalar field as φ(r, t) = Φ(r)e−iωt, where Φ(r) is
real and has n nodes. For ground state boson stars, n = 0. Stars can be found in excited states where
n ≥ 2 and their decay properties have interesting consequences, including the generation of gravitational
wave bursts [10]. We define the dimensionless variables x = mr and t̃ = mt. Primes are derivatives
with respect to x. We also absorb the dimensionless frequency ω̃ ≡ ω/m into the metric coefficient B,
B̃ = B/ω̃2 and define the dimensionless field σ(x) ≡ Φ(x)/

√
8πG. It proves convenient to rewrite the

coupling constant λ as [9]

Λ = λ
M2

Pl

8πm2
. (21)
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With these definitions, variation with respect to the metric of Eq. 7 and with respect to the scalar field
give Einstein’s equations and the Klein-Gordon equation as

A′ = xA2

[
σ′2

A
+ (

1

B
+ 1)σ2 +

Λσ4

4

]
− A

x
(A− 1)

B′ = xAB

[
σ′2

A
+ (

1

B
− 1)σ2 − Λσ4

4

]
+
B

x
(A− 1)

σ′′ = −
[

2

x
+

1

2

(
B′

B
− A′

A

)]
σ′ − A

[(
1

B
− 1

)
σ − Λ

2
σ3

]
.

(22)

These equations are solved for the boundary conditions A(0) = 1;B(∞) = 1;σ(0) = σ0;σ(∞) =

0;σ′(0) = 0. Note that solutions are thus parametrized by the dimensionless central value of the scalar
field σ0, which determines the star’s central density.

In Figure. 5 we plot the boson star mass and conserved charge for the free field case (Λ = 0). Note
that the maximum mass is also where the binding energy Eb is maximal, where Eb = M − Qm (lower
line). As shown in Refs. [11] the maximum mass is also the stability boundary for the boson star. This
is also the case for the interacting case. Note also that stars with σ0 > 0.540 have Eb > 0, and are thus
unstable to fission.

3.3.2. Configurational Entropy of Ground State Boson Stars

We now compute the configurational entropy for boson stars from Eq. 6 using the Fourier transform
of the energy density as we did with Newtonian polytropes and neutron stars. This means that for
each value of σ0 we find the solution of the Einstein-Klein-Gordon system of equations and use it
to compute the star’s energy density ρ(r). We do this for several values of the scalar self-coupling
Λ = 0, 10, 50, 100. Note that since the scalar field only vanishes at spatial infinity, boson stars don’t have
a specific radius where the energy density and pressure vanish. We thus don’t use a momentum cutoff,
computing the CE for all momenta 0 ≤ |k| ≤ ∞. The results are shown in Figure. 6 as a function of
the field’s central value σ0 for different values of the coupling Λ. The vertical lines denote the critical
value of the field beyond which the star is unstable under radial, charge-conserving perturbations. It is
apparent that these lines are very near the minima of CE for all values of Λ. We see that just as in the
case with neutron stars, the configurational entropy provides a reliable upper bound on the star’s stability.

3.4. Excited Boson Stars and Hydrogen Atom

In the previous section we see that configurational entropy of a stable ground state boson star
decreases as its mass increases until the star reaches the stability-instability transition point where
gravitational collapse is inevitable, as indicated by the minimum of configurational entropy. We thus
expect that excited boson stars, less stable than ground state boson stars, possess smaller configurational
entropy. Reference [10] predicts that a boson star in excited state may undergo spontaneous decay into
ground state, generating gravitational wave bursts.
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Figure 5. Boson star mass vs. central value of the scalar field σ0. Stars with σ0 > σc = 0.271

are known to be unstable to gravitational collapse.
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Figure 6. The configurational entropy for boson stars multiplied by inverse central density
Sρ−1

0 as a function of the scalar field’s central value σ0 for different values of the scalar field
coupling Λ. The dashed vertical line denotes σc, the instability boundary for the star under
radial perturbations. As in the case with neutron stars, the CE provides a reliable upper
bound on the critical mass, with precision better than ∼ 1%.
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We chose four boson stars in ground, first, second and third excited state, all with the same central
density σ0 = 0.4. We then obtained their energy profiles and computed their related configurational
entropy. Excited boson stars obey the same Klein-Gordon-Einstein equations, although their radial
field is no longer nodeless. Field profiles for these four stars are shown in Fig. 7. Results of their
configurational entropy are shown in Table.1. As we expected, the configurational entropy of a boson
star decreases as it gets excited.

It is instructive to compare these results to a more familiar object. We chose to examine the
configurational entropy of the hydrogen atom in its ground and excited states.

The hydrogen atom is one of the few cases where exact analytical solutions of Schroedinger’s
equation can be obtained . We are interested to check whether the CE could provide information about
the instability of excited states. We compute numerically the configurational entropy of hydrogen using
the wave function φnlm. In analogy with excited boson stars, we expect that excited states (n ≥ 2) have
smaller configurational entropy compared to ground state (n = 1).

Fourier transform of spherical symmetric wave function (l = 0) can be done in the exact same
manner as in boson star. Below is a table of configurational entropy of hydrogen atom in 1s, 2s and 3s

states.

It can be inferred from the table that configurational entropy of hydrogen atom decreases with
increasing principal quantum number, in analogy to boson stars. We conclude that configurational
entropic method can be used to pick the more stable state and that the ground state of bound objects
possesses the largest configurational entropy compared to other excited states.

Table 1. CE of boson stars (unit: m3 in planck units)

state Ground 1st 2nd 3rd
CE 4.377 2.444 1.600 1.163

Table 2. CE of hydrogen atom (unit: a−3
0 , a0 is Bohr radius)

state 1s 2s 3s
CE 2.728 0.096 0.016

4. Conclusions

We demostrated that for polytropes, configurational entropy has a inverse scaling relation with the
mass of the star, which forms stability-instability saddle ridge at γ = 4/3. We extend the results to fully
general-relativisic neutron stars modeled with an Oppenheimer-Volkoff equation of state and to boson
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Figure 7. Field profiles for boson stars with central density σ(0) = 0.4 on ground and three
excited states. Ground state boson star is nodeless while other three excited stars each hit
zero 1,2 or 3 times.
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stars made of self-interacting complex scalar fields. Using the energy density of the configurations
to compute their respective configurational entropy, we were able to obtain predictions to the critical
stable mass with precision better than one percent for all these objects. Our approach should be seen as
an alternative to usual perturbation techniques based on finding unstable eigenvalues [2,3]. Given that
finding the eigenfuctions to determine perturbative stability can often be quite taxing, the configurational
entropy offers another avenue to compute the critical mass of a variety of stellar objects. We also present
tentative approch to compare the stability of boson stars in ground or excited states and tested using
hydrogen atom model.

One question of great interest is to examine how to expand our method to include objects with lower
symmetries, for example axial-symmetric bound states or even asymmetric bound states. In principle
we should be able to compute the Fourier Transform for these cases and thus obtain the Configurational
Entropy and determine their stability properties. Work in this topic is under investigation. Finally, we are
also investigating the evolution of the configurational entropy during gravitational collapse. We expect
that as the star becomes more localized its configurational entropy will increase. An important question
is to determine whether the configurational entropy reaches a maximum when the event horizon forms
and whether there is a relation between this hypothetical maximum value and Bekenstein’s entropy
based on the surface area of the black hole [12].

Acknowledgements

MG was supported in part by a Department of Energy grant DE-SC0010386. MG and NJ also
acknowledge support from the John Templeton Foundation grant no. 48038.

Author Contributions

All authors contributed extensively to the work presented in this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gleiser, M.; Stamatopoulos, N. Entropic measure for localized energy configurations: Kinks,
bounces, and bubbles. Physics Letters B 2012, 713, 304–307.

2. Weinberg, S. Gravitation and cosmology: principles and applications of the general theory of
relativity; Wiley, 1972.

3. Shapiro, S.L.; Teukolsky, S.A. Black holes, white dwarfs and neutron stars: the physics of compact
objects; John Wiley & Sons, 2008.

4. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing
and Communications Review 2001, 5, 3–55.



Entropy 2015, xx 17

5. Oppenheimer, J.R.; Volkoff, G.M. On massive neutron cores. Physical Review 1939, 55, 374.
6. Chandrasekhar, S. The highly collapsed configurations of a stellar mass (Second paper). Monthly

Notices of the Royal Astronomical Society 1935, 95, 207–225.
7. Kaup, D.J. Klein-gordon geon. Physical Review 1968, 172, 1331.
8. Ruffini, R.; Bonazzola, S. Systems of self-gravitating particles in general relativity and the concept

of an equation of state. Physical Review 1969, 187, 1767.
9. Colpi, M.; Shapiro, S.L.; Wasserman, I. Boson stars: Gravitational equilibria of self-interacting

scalar fields. Physical review letters 1986, 57, 2485.
10. Ferrell, R.; Gleiser, M. Gravitational atoms: Gravitational radiation from excited boson stars.

Physical Review D 1989, 40, 2524.
11. Gleiser, M. Stability of boson stars. Physical Review D 1988, 38, 2376.
12. Bekenstein, J.D. Black holes and entropy. Physical Review D 1973, 7, 2333.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Methods
	Configurational Entropy
	Conventions and Fundamental Equations

	Results and Discussion
	Polytropes
	Neutron Stars
	Boson Stars
	Formalism
	Configurational Entropy of Ground State Boson Stars

	Excited Boson Stars and Hydrogen Atom

	Conclusions

