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Abstract: The production processes in the packaging materials industry has to be very 

efficient and cost-effective. These processes usually take place under extreme conditions and 

high speeds that requires a high level of reliability and safety. Rollers including their motors 

and support bearings are the most common components of production machines in the 

packaging materials industry. Bearing faults, which often occur gradually, represent one of 

the foremost causes of failures. Therefore detection of their faults in early stage is quite 

important to assure safe and efficient operation. We present a new automated technique for 

early fault detection and diagnosis in rolling-element bearings based on vibration signal 

analysis, wavelet transform and statistical pattern recognition. Accuracy of the technique has 

been tested on four classes of the recorded vibrations signals, i.e. normal, with the fault of 

inner race, outer race and balls operation. The overall accuracy of 98.9% has been achieved. 

The new technique can be used to increase reliability and efficiency in the industry by 

preventing unexpected faulty operation of bearings. 

Keywords: reliability; bearings; fault diagnosis; wavelet transform; statistical pattern 

recognition. 
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In order to further increase its competitiveness the packaging materials industry needs to deploy 

advanced maintenance strategies and solutions for improved reliability of its production machines as 

well as safety of its production processes. Reliability-centered maintenance (RCM) is one of such 

strategies that is usually performed at plant level. As such it plays an increasingly important role in order 

to achieve a reliable, save and efficient operation of production machines. RCM aims to optimize the 

entire maintenance program and define optimal measures to be implemented on each of the machines. 

Manufacturing of paper-based packaging materials usually includes three key production processes 

which are printing, laminating and slitting, in that order. All these processes take place under extreme 

conditions and high speeds that requires a high level of reliability and safety. For example, the running 

speed of a printing machine and a laminator is around 600 m/min while in the case of a slitting machine 

it reaches 1000 m/min. Apart from a high running speed the laminating process is also characterized by 

high temperatures since polyethylene is at first melted and then adhered to the packaging material. 

Rollers together with their supporting bearings and electric motors, as shown in Figures 1 and 2, are the 

most common components of these production machines. Bearings operate under high loading and 

severe conditions and their faults represent one of the foremost causes of failures. 
 

       
Figure 1. Roller (left), bearing (middle) and electric motor (right). 

 

Figure 2. Scheme of a laminator containing around 50 rollers. 

 

Figure 3. Predictive maintenance Potential to Functional Failure (P-F) curve. 

As shown in Figure 3 bearing faults often occur gradually. Defective bearings generate various forces 

causing high amplitude of vibration. Therefore it is very important to avoid deteriorating condition, 

degraded reliability and unexpected failures of bearings. Based on an RCM analysis performed on the 

laminator at Tetra Pak packaging materials plant in Gornji Milanovac, Serbia it has been concluded that 

for most of bearings a regular check of vibration level every two weeks by a portable, handheld data 
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collector and analyzer can ensure their reliable and safe operation as well as an early detection of bearing 

faults. However at a few critical points it has been proposed to do more frequent checks that becomes 

resource-demanding and not so optimal anymore. Therefore installation of an online vibration 

monitoring system including deployment of an automated technique for early FDD in bearings. Such a 

system saves time of maintenance technicians and enables objective, reliable and faster detection and 

diagnosis of bearing faults, and thus making the entire production process safer. Since vibration sensors 

and data acquisition systems are already available in the market the Tetra Pak plant has designed an 

online vibration monitoring system as presented in Figure 4. At the same time the plant also initiated 

development of a new automated technique for early FDD in bearings to be tested and potentially 

deployed in this plant once all the equipment is installed. This paper focuses on development of such a 

technique.    

 

Figure 4. Online vibration monitoring system. 

Many techniques for FDD in bearings based on vibration signal analysis have emerged in recent 

years. Generally, an FDD can be decomposed into three steps: data acquisition, feature extraction, and 

classification. An effective feature extraction as the key step represents a mapping of vibration signals 

from their original measured space to the feature space which contains more valuable information for 

FDD. Even though time-domain features, e.g. peak, mean, root mean square, variance, have also been 

employed as input features to train a bearing FDD classifier the fast Fourier transform (FFT) is the most 

widely applied and established feature extraction methods [1]. However, the techniques based on FFT 

are not suitable for analysis of non-stationary signals. Since vibration signals often contain non-

stationary components, for a successful FDD it is very important to reveal such information as well. 

Thus, a supplementary technique for non-stationary signal analysis is necessary. Time-frequency 

techniques, e.g. the Wigner–Ville distribution (WVD) [2] and the short-time Fourier transform (STFT) 

[3] also have their own disadvantages. The WVD bilinear characteristic causes interference terms in the 

time-frequency domain while the STFT results in a constant resolution for all frequencies having in mind 

that it uses the same window size for the analysis. The wavelet transform very accurately resolves all 

these deficiencies. It ensures a good frequency resolution and low time resolution for low-frequency 

components while for high-frequency components it provides low frequency resolution and good time 

resolution. Therefore the wavelet transform is widely applied in the vibration signal analysis and feature 
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extraction for bearing FDD [4, 5]. A precise classification as the next step directly depends on previously 

extracted features, i.e. there is no a classifier which can make up for the information lost during the 

feature extraction. As in the case of the feature extraction, we can come across a wide range of classifiers 

used for FDD in bearings. The classifiers based on artificial neural networks [6-8] and fuzzy logic [9, 

10] demonstrated a very reliable classification. However, the disadvantage of the mentioned 

classification techniques is that they require the availability of a very big training set. They also have a 

large number of parameters to be selected and adjusted in order to obtain acceptable results [11]. 

Therefore, there is a strong need to make the classification process simpler, faster and accurate using the 

minimum number of features and parameters. 
 

 

Figure 5. Flowchart of the new technique for early FDD. 

In this paper a new technique for early FDD is proposed. As shown in Figure 5 it has a few steps. The 

first one is acquisition of signals as well as their preprocessing which includes normalization and 

segmentation. In the next step and after the wavelet transform of vibration signals 6 representative 

features, i.e. the standard deviation of the wavelet coefficients in six sub-bands, are extracted in the time-

frequency domain. In the third step the feature space dimension is optimally reduced to two using scatter 

matrices while in the final step in total three quadratic classifiers are designed [12], the one for detection 

and the other two for diagnosis of bearing faults. Using this new approach, the overall complexity of 

FDD is decreased and at the same time a very high accuracy maintained compared with already available 

techniques which employ more complex training algorithms. 

2. Materials and methods 

2.1 Acquisition and preprocessing of the vibration signals 

Before testing and deployment of the new technique into a real production environment, its capability 

was tested using the vibration data obtained from the CWRU Bearing Data Center [11] since it has 
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become a standard reference in the field of FDD in bearings. A ball bearing as one shown in Figure 7 

was installed in a motor-driven system presented in Figure 6. An accelerometer with a bandwidth up to 

5000 Hz and a 1 V/g output was used to acquire the vibration signals from the bearing. 
 

 

Figure 6. Ball bearing. 

 

Figure 7. Experimental system. 

The sampling rate of 12000 Hz is ample having in mind that the frequency content of interest does 

not exceed 5000 Hz. In total four sets of data were obtained and used:  

1. Under normal conditions;  

2. With inner race faults;  

3. With ball faults; 

4. With outer race faults.  

The faults with diameter from 0.007 to 0.40 inches and depth of 0.011 inches were introduced 

separately at the bearing elements. The bearing was tested under different loads, i.e. 0, 1, 2 and 3 hp, 

while the shaft rotating speeds were 1730, 1750, 1772 and 1797 rpm. Only the smallest fault diameter 

was selected for this study since we were interested in an early FDD. In order to make the entire 

technique more robust and less dependent on the vibration signal magnitude the recorded vibration 

signals were normalized to zero mean and unit variance. The vibration signals collected from each of 

four different conditions are divided into 256 segments of 1024 sample each, as shown in Figure 8. In 

total 1024 segments were used, 512 for design and 512 for testing of the new technique for early FDD 

in bearings. 
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Figure 8. Segments of the vibration signals collected from four different conditions of the ball bearing. 

2.2 Wavelet transform 

As we already know a signal can be represented as linear combination of basic functions. A unit 

impulse function with limited power is limited and non-zero mean is the basic function in the time 

domain. In the frequency domain, the role of basic function is assigned to the sinusoidal function with 

infinite power and zero mean. When using the wavelet transform to transform the signal from the time 

domain to the time-frequency domain, the basic function is the wavelet. The wavelet is a function of 

limited power and zero mean [13], and for which the following is valid  |߰[݊]|ଶ < ∞ஶ
ୀିஶ ,  ߰[݊] = 0ஶ

ୀିஶ .																																																			(1) 
The wavelet can be moved in time for ܾ samples and scaled by the so-called dilation parameter ܽ. In 

such a case it is given by ߰[݊] = 1√ܽ߰ ݊ − ܾܽ ൨.																																																																			(2) 
If the dilation parameter changes, the basic wavelet (ܽ = 1) changes its width, and thus spreads (ܽ >1) or contracts (0 ≤ ܽ < 1) in the time domain as shown in Figure 9. In the analysis of non-stationary 

signals, such a possibility represents a significant advantage, considering the fact that wider wavelets 

are useful for extraction of slower changes, i.e. low frequency components, while narrower wavelets are 

useful for extraction of faster changes, i.e. high frequency components. Following the selection of ܽ and ܾ it is possible to transform segments of the signal ݔ[݇] of ܰ samples, and calculate the wavelet 

transform coefficients in the following way ݓ[݊] =ݔ[߬]߰[݊ − ߬]ே
ఛୀଵ , 1 ≤ ݊ ≤ ܰ																																																		(3) 

Only those frequencies which are within the wavelet frequency band  ߰[݊] are extracted, i.e. the 

signal is filtrated by the wavelet ߰[݊].	Using the obtained wavelet coefficients, the original signal can 
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be reconstructed that is inverse wavelet transform. It is also possible to independently reconstruct both 

filtered and rejected part of the signal by the wavelet ߰ [݊]	using the so-called detail and approximation 

coefficients respectively, which are of course a function of the transformation coefficients ߰[݊]. 

 

Figure 9. Sinusoid and two wavelets with different width. 

Parameters ܽ and ܾ can be continuous. However it is not so much practical since the signal can be 

transformed and reconstructed by using smaller number of wavelets, i.e. a limited number of discrete 

values of ܽ and ܾ. It is known as the discrete wavelet transform (DWT) where parameters ܽ and ܾ are 

the powers of 2 and in that case frequency bands do not overlap each other. The dilation parameter a, as 

the power of 2, at each subsequent higher level of transformation, doubles in value in comparison to the 

value from the previous level. Thus, the signal frequency band from the previous level is split into two 

halves at every next level, into a higher band which contains finer changes, or details, and a lower band 

which is an approximation of the signal from the previous level. This technique is known as the wavelet 

decomposition. 

2.3 Dimension reduction in the feature space 

Let ܺ = xଶ	ଵݔ] 	⋯	x]் be transformed into ܻ = yଶ	ଵݕ] 	⋯	y]் =  is an n-dimensional ܣ where ்ܺܣ

transformation matrix. Mapping of ܺ  into the space which is made up by the eigenvectors Φଵ,Φଶ, … ,Φ 

of its covariance matrix Σ is known as the principal component analysis (PCA) [14]. When reducing 

the feature space dimension using the PCA [14] the performance of each feature ݔଵ, xଶ, … , x is 

characterized by its eigenvalue ߣଵ, ,ଶߣ … ,  , respectively. Thus, by rejecting features we should firstߣ

reject those with the smallest eigenvalue. In other words, the rejected features have the smallest variance 

in the new feature space. In the case shown in Figure 10 where the dimension is reduced from two to 

one, the mapped feature ݕଶ would be rejected based on the PCA as less informative even though it has 

better discriminatory potential than ݕଵ.  
 

 

Figure 10. Dimension reduction in the feature space. 
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Unlike the PCA, the dimension reduction based on scatter matrices [12] is more interesting in this 

work since it takes into consideration also classification as one of purposes of the dimension reduction. 

Let ܮ be the number of classes to be classified and  ܯ and Σ, ݅ =  their mean vectors and ܮ⋯1

covariance matrices. Then the within-class scatter matrix is given as:  ܵௐ = ܲ
ୀଵ ܺ)ሼܧ ܺ)(ܯ− )்/߱ሽܯ− = ܲ

ୀଵ Σ																																							(4) 
while is the between-class scatter matrix is defined as: ܵ = ܲ

ୀଵ ܯ) − ܯ)(ܯ −  (5)																																																					)்.ܯ
ܯ  . is the joint vector of mathematical expectation for all the classes together, i.eܯ = ሼܺሽܧ = ܲ

ୀଵ  (6)																																																												.ܯ
In addition the mixed scatter matrix can be given as: ܵெ = ܺ)ሼܧ ܺ)(ܯ− )்ሽܯ− = ܵௐ + ܵ.																																													(7) 
Then the problem of dimension reduction is reduced to the identification of the ݊ ×݉ transformation 

matrix ܣ which maps the ݊-dimensional vector  ܺ into the ݉-dimesnional random vector ܻ =  and ்ܺܣ

also maximizes the criteria ܬ =  This criteria is invariant to non-singular linear .(ௐିଵܵܵ)ݎݐ

transformations and results into transformation matrix that takes the following form: ܣ = [Ψଵ	Ψଶ 	⋯	Ψ]																																																																	(8) 
where Ψ, ݅ = 1,… ,݉ are the eigenvectors of ܵௐିଵܵ which correspond to its ݉ greatest eigenvalues. 

The dimension reduction based on scatter matrices applied to the case shown in Figure 10 would result 

into selection of the mapped feature ݕଶ. Obviously it is much better choice than ݕଵ selected by the PCA 

in terms of more accurate classification as the main goal of the dimension reduction. 

2.4 Design of quadratic classifiers 

Quadratic classifiers are known as very robust solutions to the classification problems whose 

statistical features are change over time [12]. In addition they also provide visual insight into the 

classification problem. A quadratic classifier to be designed in the two-dimensional feature subspace ܻ = (ܻ)can be defined by the following equation: ℎ ்[ଶݕ	ଵݕ] = ்ܻܻܳ + ்ܸܻ + ߥ = [ଶݕ	ଵݕ] ቂݍଵଵ ଶଵݍଵଶݍ ଶଶቃݍ ቂݕଵݕଶቃ + [ଶߥ	ଵߥ] ቂݕଵݕଶቃ +  (9)																.ߥ
The matrix ܳ, vector ܸ and scalar ߥ are the unknowns to be optimally determined. Eq. (9) can be 

represented in a linear form as: 

ℎ(ܻ) = [ଶߥ	ଵߥ	ଶଶݍ	ଵଶݍ	ଵଵݍ] ێێۏ
	ۍێ ଶݕଵݕଶଶݕଶݕଵݕଵଶ2ݕ ۑۑے

ېۑ + ߥ = ௭்ܸ ܼ +  (10)																																					.ߥ
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In order to achieve as large as possible between-class and as short as possible within-class scattering 

we have selected the following function as the optimization criterion [12]: ݂ = ଵܲߟଵଶ + ଶܲߟଶଶଵܲߪଵଶ + ଶܲߪଶଶ 																																																																				(11) 
where ଵܲ and ଶܲ are probabilities and ߟ = ሼℎ(ܼ)/߱ሽܧ = ሼܧ ௭்ܸ ܼ + /߱ሽߥ = ௭்ܸ ܯ + ଶߪ (12)																																						ߥ = ሼℎ(ܼ)/߱ሽݎܽݒ = ሼݎܽݒ ௭்ܸ ܼ + /߱ሽߥ = ௭்ܸ Σ ௭ܸ.																																		(13) ܯ and Σ	are the mean vectors and covariance matrices, respectively, of the vector ܼ for each of 

classes which should be classified. After optimization of the function ݂, the optimal vector ௭ܸ, and thus 

the optimal matrix ܳ and vector ܸ, gets the following form 

௭ܸ = ێێێۏ
ଶߥଵߥଶଶݍଵଶݍଵଵݍ	ۍ ۑۑے

ېۑ = [ ଵܲΣଵ + ଶܲΣଶ]ିଵ(ܯଶ  (14)																																											ଵ)ܯ−
while the optimal scalar is ߥ = − ௭்ܸ ( ଵܲܯଵ + ଶܲܯଶ)																																																											(15) 

which finishes the design of the quadratic classifier. 

3. Results and discussion 

In order to extract representative features and before we apply the wavelet transform it is necessary 

to choose both the basic wavelet type and the number of resolution levels into which the vibration signal 

segments will be decomposed. After analysis of several types of the basic wavelets, the fourth-order 

Daubechies wavelet was selected since it demonstrated better discriminatory potential and also has good 

localizing properties both in the time-frequency domain [13]. The five-level wavelet decomposition of 

the vibration signals recorded with a sampling frequency of 12000 Hz resulted into the following six 

frequency sub-bands ܣହ 0-187.5 Hz, ܦହ 187.5-375 Hz, ܦସ 375-750 Hz, ܦଷ 750-1500 Hz, ܦଶ 1500-3000 

Hz and ܦଵ 3000-6000 Hz.  

Following the wavelet decomposition, the standard deviation of the obtained wavelet coefficients in 

each sub-band were extracted as representative features in the time-frequency domain. Note that the 

standard deviation is used here to quantify the average and relative energy in each sub-band because the 

vibration signals were previously normalized to zero mean and unit variance. In total 6 features were 

extracted for each of 1024 analyzed segments. Now each original segment recorded in the time domain 

is represented by its feature vector ܺ = ଶݔଵݔ]  ]். The extracted features for all four classes are givenݔ⋯

in Table 1.  
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Тable 1. Standard deviation (SD) of the wavelet coefficients in different sub-bands. 

In
d

ex 

Feature 
Sub-
band 

Normal Ball fault Inner race fault 
Outer race 

fault 

ହ 2.705 0.585ܣ  ଵ SDݔ ࣌       ࣆ      ࣌       ࣆ      ࣌       ࣆ      ࣌       ࣆ       0.795 0.383 0.728 ହ 1.694 0.193ܦ ଶ SDݔ0.484 0.473 0.467 0.545 0.093 0.431 ସ 1.288 0.106ܦ ଷ SDݔ0.116 0.247 0.126 0.636 0.092 0.750 ଷ 1.847 0.199ܦ ସ SDݔ0.063 0.302 0.058 0.525 0.087 0.919 ଶ 0.800 0.033ܦ ହ SDݔ0.056 0.243 0.044 1.239 0.052 1.267 ଵ 0.220 0.025ܦ  SDݔ0.097 1.255 0.057 1.041 0.035 0.951 0.037 1.083 0.055
 

 

Figure 11. Standard deviation of the wavelet coefficients in the sub-band ܦହ, normal (green), 

ball fault (red), inner race fault (blue) and outer race fault (magenta) 

Obviously in presence of a bearing fault there is a shift in energy in the vibration signals from lower 

to higher sub-bands. In Table I and Figure 11, it can also be noticed that most of the extracted features 

have a certain potential for the fault detection but not for the fault diagnosis. Therefore it is necessary to 

find their optimal combination in order to achieve a better separability between different classes of 

bearing condition. That is usually done by a mapping of the existing feature space into a new one whose 

dimension can be reduced without any significant loss of information that makes the classification 

process much simpler. Although the PCA is one of the most widely used techniques for reduction of the 

feature space dimension [14] in this paper we apply the technique based on scatter matrices [12] since it 

is more suitable for classification problems as described in Section 2.3. At first, we reduce the feature 

space dimension to enable the fault detection and then repeat the same procedure in order to diagnose 

the detected fault as shown in Figures 12 and 13. Obviously in this way separabilty between different 

classes is increased compared with Figures 11. After the dimension reduction we designed suitable 

quadratic classifiers following the procedure described in Section 2.4, that is also the last step in design 

of the new technique for early FDD. The first quadratic classifiers shown in Figure 12 separates normal 

from faulty condition, i.e. performs the fault detection, while the other two quadratic classifiers shown 

in Figure 13 are able to separate all three different bearing faults from each other, and thus perform the 

fault diagnosis.  
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Figure 12. Dimension reduction and classification for the fault detection, normal (green) 

and faulty (red, blue and magenta) segments of the design set. 

 

Figure 13. Dimension reduction and classification for the fault diagnosis, segments of the 

design set with ball fault (red), inner race fault (blue) and outer race fault (magenta). 

Unlike in the previous two figures where the design set of 512 segments is shown, Figures 14 and 15 

show the remaining set of 512 segments used to test the performance of the new technique for early FDD 

as well. Statistical performances such as sensitivity, specificity and accuracy are estimated [14].  

 

Figure 14. Dimension reduction and classification for the fault detection, normal (green) 

and faulty (red, blue and magenta) segments of the testing set. 
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Figure 15. Dimension reduction and classification for the fault diagnosis, segments of the 

testing set with ball fault (red), inner race fault (blue) and outer race fault (magenta). 

The classification results can also begiven by a confusion matrix shown in Table 2, where its each 

cell contains number of classified features for each combination of three classes of the vibration signals. 

Based on Figure 15 and the confusion matrix, we can conclude that all the segments from the ball fault 

class were correctly classified. However, the remaining two classes contained in total three segments 

which were incorrectly classified, i.e. classified as they belong to the ball fault class. The statistical 

performances are given in Table 3.The total accuracy of the new technique for early FDD in bearings is 

98.9%. Usually, quadratic classifiers are robust and do not result in overtraining when the number of 

estimated parameters is much less than the number of analyzed samples. 

Table 2. Confusion matrix 

Fault type (input/output) Ball fault Inner race fault Outer race fault 

Ball fault 128 2 2 
Inner race fault 0 126 0 
Outer race fault 0 0 126 

Table 3. Statistical performances 

Fault type 
Statistical performances [%] 

Sensitivity Specificity Accuracy 
Ball fault 100.0 98.4 

98.9 Inner race fault 98.4 99.2 
Outer race fault 98.4 99.2 

 

Taking into account the results of other techniques tested on the same vibrations signals, e.g. 41 

papers published in Mechanical Systems and Signal Processing between 2004 and early 2015 [16], the 

new technique demonstrated a very good performance which is either better or comparable with other 

available techniques which usually deploy much more complex algorithms. In addition, in this work 

only the segments with the smallest fault diameter were used because we were interested in incipient 

FDD. It should also be emphasized that the vibration signals were normalized before further processing. 

In that way we managed to overcome one of main disadvantages of other techniques in terms of 

application in a real production environment since most of them also depend on the amplitude of the 
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vibration signals. However, the amplitude has been found as unreliable in real applications since it varies 

even with healthy bearings, e.g. depending on their load. 

4. Conclusion 

In order to further increase reliability and safety of production machines in the packaging materials 

industry it is necessary to deploy an advanced techniques for automated early fault detection and 

diagnosis. In this paper we described such a technique to be used in rotating-element bearings as the 

most common components of production machines in the industry. The new technique based on the 

wavelet transform and statistical pattern recognition demonstrated a very high accuracy that is either 

better or comparable with other available techniques which in most cases require a big training set and 

a large number of parameters necessary to select and adjust in order to obtain acceptable results. A 

special attention has been paid to robustness of the new technique not only during the feature extraction 

and the reduction of the feature space dimension but also during the classification process that resulted 

in the choice of quadratic classifiers known for both their simplicity and a high level of robustness in the 

applications of this type. Quadratic classifiers have also possibility to visualize the classification results 

in two-dimensional space. As future work we plan to test the new technique in a real production 

environment at Tetra Pak.  
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