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Abstract: Identifying failure signatures of machines and modeling them to predict
problems well before failure occur has been of great interest to reliability and maintenance
engineers, primarily because of the unparalleled advantages like improved equipment
up-time, lower maintenance cost, and reduced safety risk. Production critical machinery
often requires intelligent real time monitoring and an unplanned interruption can have high
cost implications. To address this, we utilize the on-board sensor data and develop a near-real
time prediction system to identify anomalies and failure patterns of assets. Development of
such data driven system will help improve reliability engineering strategies by modeling
system dynamics and predicting equipment health problems.

Keywords: Smart Maintenance; Markov process; SVD; Intelligent sensor analytics, Exhaust
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1. Introduction

Field of Sensor analytics has seen an immense growth in past few years. There are many contributing
factors to that like changes in time series database technology, inexpensive storage and processing power
and most importantly rising interest of machine learning community towards interdisciplinary research.
The primary goal of Intelligent sensor analytics is to detect upcoming failures and anomalies. There are

many use cases such as predicting and proactively preventing equipment failure in a manufacturing plant,



alerting a nurse in an electronic intensive care unit when a patient’s blood pressure drops, or allowing a
data center administrator to make data-driven decisions about heating, ventilating and air conditioning
(HVACQ).

Although there has been considerable amount of research done in the fixed plant environment,
researchers have just started to scratch the surface in the area Mobile Mining equipment like Haul Trucks,
shovels and auxiliary equipment. The reason being the odd problems associated with mobile equipment
operation like discontinues data stream because of dead zones in the mine, sophisticated machinery
where different vendors are at play making data integration an issue, asynchronous data etc. Hence a
robust, scalable and self-adaptive technique is required that can work with live data feed to convert the
multidimensional machine sensor data into knowledge in order to forecast the future dynamics of the

system as whole and provide real time predictions.
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Figure 1. Proposed Architecture

Figure 1, explains the overall flow of the proposed framework from origin of data to forecast based
feedback to the operations. In the world of mobile equipment, data collection is usually accomplished
by connecting multiple ECMs (electronic control module) to a centralized system which processes and
transmits the information to some kind of historian on a data server. In real life scenario a machine
is manufactured by assembling different OEM components which makes it hard to integrate data from
different ECMs primarily due to difference in time stamps. Apart from online data, static data sources
like oil analysis, weather, maintenance feedback data, GPS etc are also integrated. The modeled data
is fed into the prediction engine to get future dynamics, anomalies and failure patterns. This could
be used to create variety of decision support tools to assist and develop maintenance and reliability
technical operating envelopes and control measure around operations. Another advantage is in planning
component replacements which is currently being done based on probability based failure modeling



techniques like the weibull analysis [7]. This framework can be further developed to take health forecast
based component replacement decisions.

2. Problem formulation and Discussion

Consider a machine with m sensors sending data asynchronously. We aim to predict short and long
term behavior of the system. For this behavior analysis we regard observed data as realization of a set of
underlying stochastic process ultimately responsible for what we observe. The proposed framework is
divided into two phases - learning phase and self-adaptation and online prediction phase. In the learning
phase, we first preform data pre-processing which involves filtering out sensor errors and creating time
series data vectors by interpolating or extrapolating data points. After the pre-processing stage, data
is segmented into small fixed size windows and characteristic features (f) are extracted using auto
correlation coefficients. The resulting mx f matrix is decomposed using singular value decomposition
(SVD) and only first K singular values are stored. Each time window is treated as a state in the Markov
process and similar states are merged together using Frobenius norm comparisons. An irreducible state
transition matrix and a matrix containing singular values of each state are returned.

In the online phase, real time data is passed through the prediction engine where the new time window
(W) is analyzed and is either merged with a similar state (C') or added to the system as a new state and the
state transition matrix is updated accordingly. If p is an irreducible regular Markov matrix, we calculate
short and long range probabilities with C' being the current state. A detailed framework is explained in
section (3).

3. Framework

The proposed framework is divided into Learning Phase and Online Prediction Phase, which are
described below.

3.1. Learning Phase

The collected historical data is fed sequentially into learning module which is further broken down
into 4 sub modules: Data Pre-processing, Feature extraction, Singular value decomposition and Markov

chain process.
3.1.1. Data Pre-processing

Data preprocessing plays an important part in any machine learning algorithm especially in the field
of sensor data analytics because of sensor related errors like missing or false values. A big challenge for
data quality in mining equipment is asynchronous time stamps which come from the underlying logistics.
Sophisticated mining machines such as a Komatsu 930E are assembled with various vendors involved
who have their own centralized system of gathering data. The problem becomes more visible when data
coming from two different systems needs to be integrated to find cross correlations at different lags as the
time stamps are different and data is usually sampled and aggregated. An effective data pre-processing

technique is required to deal with these problems and convert data into meaningful time series. We



eliminate sensor errors by filtering out values exceeding possible max and min. We then convert data
into fixed interval data vectors by linear or nonlinear interpolation based on nature of data.

3.1.2. Feature extraction

Data pre-processing is followed by another interesting step - feature extraction. Data is segmented
into small fixed size windows and characteristic features are extracted using auto correlation coefficients.
To compare sensor values based on their shape information, each sequence is normalized to have a zero
mean and a standard deviation equal to one. Then, each normalized sequence is represented using a
set of auto correlation coefficients. Considering x as a sub sequence with length ¢, its auto correlation
coefficient for lag s can be estimated using (1).
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Auto correlation coefficients estimate how much a signal matches its time-shifted version [2].

)

3.1.3. Singular Value Decomposition

Singular value decomposition (SVD) has been effectively used for data compression in [1,8]. The
task of compression begins with a matrix A consisting of numeric data, and the goal is to find a close
approximation to A consisting of fewer dimensions. Because the rank of a matrix specifies the number
of linearly independent columns (or rows), it is a measure of redundancy [3]. The best rank — k
approximation to a matrix A € Rm X n is

k
Ak = Z Oﬂh’(Ui)T (2)
i=1

where 01 > 09 > ... > 0} > 0 are the top k singular values of A, with associated left and right singular
vectors u; € R™ and v; € R", respectively respectively. In our approach, we store and operate on the

top k Singular values o; and corresponding z;and (v;)T vectors.
3.1.4. Markov Chain

A Markov process is a random process for which the future (the next step) depends only on the present
state; it has no memory of how the present state was reached [4]. A Markov chain, studied at the discrete
time points 0, 1, 2,..., is characterized by a set of states .S and the transition probabilities p; ; between the
states. Here, p; ; is the probability that the Markov chain is at the next time point in state j, given that it
is at the present time point at state . The matrix P with elements p; ; is called the transition probability
matrix of the Markov chain.

Mathematically, we say that (X,,),>o is a Markov chain with initial distribution A and transition

matrix P if for all n > 0 and g, ..., 7,41 € 1,

P(Xo =ig) = A, (3)

P(Xn—l-l - in—l—l | XO - 7:07 ceey Xn - Zn) - P(Xn—H - in—l—l ‘ Xn - ln) - pininH (4)



In short, we say (X,),~0 is Markov(\, P). Checking conditions (3) and (4) is usually the most
helpful way to determine whether or not a given random process (X,,),~¢ is @ Markov Chain.

One of the goals of Markov chains is to find stationary distributions. Both irreducibility and
aperiodicity are properties such that if they are fulfilled by a finite state Markov chain there exists a
stationary distribution [6].

Irreducibility is the property that regardless the present state we can reach any other state in finite
time [5]. Mathematically, it is expressed as:

Vi,j€8,3m < o0 P(Xpim =4 | Xn=1i>0) (5)

Each state in markov process is represented by top k singular values obtained in section 3.1.3 and
similar states are merged together using euclidean distance by specifying a distance cutoff «. State
transition matrix P is updated accordingly.When a new state is added to system, in order to satisfy the
irreducibility condition, the Markov chain needs to be converted to irreducible chain by adding a path
from the new state to all the states in the system with a very small probability.

3.2. Online prediction system

In the online phase, real time data flows into a stack and depending on the size of window chosen,
the stack is considered full if any of the sensors reach the count threshold. Data in stack is transferred
to a pre-processing module where it is modeled into a time series. For this fixed size time window,
top k singular values are calculated and the vector is then fed into the prediction engine where the new
window (IV) is analyzed and is either merged with a similar state (C') or added to the system as a new
state and the state transition matrix is updated accordingly. If P is an irreducible regular Markov matrix,
we calculate short and long range probabilities with C' being the current state.

3.2.1. Short term behavior

The Probability distribution over states can be written as a stochastic row vector x with the relation:
gt = g p (6)

Where P is the state transition matrix obtained from the learning phase and (™ is the current state (live).
So if at time ¢ the system is in state n, then in next time period, the system will be at state n + 1 with the
probability z(™ P.

Short term behavior could be used to tackle critical or high priority issues. For example, if the
maximum probability of next transition is to a stage indicating fire hazard, operator on the mining
equipment can be notified immediately potentially saving a life.

3.2.2. Long term behavior

In equation 6, when n — oo, we obtain steady state probability distribution of the system. This shows
that the state with maximum probability is where the system will end up in long term. This can help us
answer the question: Given the current health condition of equipment, what kind of problem(state) is it

most likely going to end up in long term.



3.3. Case Study and Experimental Evaluation

The initial experimentation was done to predict problems related to exhaust leaks and worn turbo
Journal in a 797 haul truck engine. In this case study 2 years worth of synthetic sensor data was created
from 6 different sensors mimicking the On-board VIMS data gathering system. The Parameters selected
affecting the problem are: Exhaust temperature left front, Exhaust temperature right front, Exhaust
temperature left rear, Exhaust temperature right rear, Boost pressure front and Boost pressure rear. In
normal operation, front and rear engine operates at similar temperatures and pressure. Usually when
there is deviation, it is commonly caused by exhaust leaks or worn turbo journals on the hot engine. We
simulate time series for the chosen parameters where the exhaust temperature and boost pressure starts
deviating slowly and eventually the front roughly trends 50°C hotter than the rear. The algorithm for this

case study was tested for different values of:
e Fixed Window size
e Distance cutoff

After training the Markov chain, the model was tested using selected test windows. The model could
categorize each window of data into different states based on the dynamics of each sensor. The test
window is analyzed and is either merged with a similar state (C') or added to the system as a new state
and the state transition matrix is updated accordingly. The state most similar to the test window is treated
as the current state. Based on the exhaust temperature and boost pressure deviation, 10 windows were
identified and windows just prior to those dates were selected as test windows. The predicted process
dynamics of the system are plotted in Figure 2.

Plot 2(d) and 2(e) shows predicted and actual exhaust temperatures on front and rear respectively. Plot
2(f) shows the predicted values for front and rear, which shows a deviation indicating potential exhaust
leaks or worn turbo journals. Furthermore, Plot 2(c) shows predicted values for boost pressure from
front and rear showing deviations which further confirms the problem.

Our algorithm was able to proactively predict the potential problem. In a reactive environment, this
problem would have caused the affected engine to run hot which may have damaged the exhausted
manifolds and turbos, leading to unplanned downtime and costly repairs.Based on the forecast,
maintenance is recommended to be notified to check the engine exhaust manifold for leaks and if found,

manifold should be resealed with high priority.

4. Conclusions

In this paper, we proposed and analyzed a real time prediction system for mining equipment solving
a variety of problems in the world of data driven reliability engineering. We utilized the concept of low
rank matrix approximation for efficient storage and retrieval of real time data. Markov chain was used
to model the process dynamics and to predict the short and long term behavior of the system. This self
adaptable model is used for a case study to predict exhaust leaks on a CAT 797 Haul truck engine. The
developed model can be combined with other data sources to create an effective decision support tool
for maintenance.
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Figure 2. Experimental Results: (a) Front boost pressure vs. Time, (b) Rear boost pressure
vs. Time, (c) Predicted boost pressures vs. Time, (d) Front Exhaust Temperature vs. Time,
(e) Rear Exhaust Temperature vs. Time, (f) Predicted Exhaust Temperature vs. Time
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