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Abstract: Modern and sustainable viticulture entails objective and fast monitoring of crucial
variables for rational decision making. Data mining strategies may be applied to agricultural
data, with the aim of yielding useful, reliable and objective information. This work presents
the most recent applications of machine learning algorithms to grapevine plant phenotyping,
such as varietal discrimination and water status assessment. Support vector machine (SVM)
and modified partial least squares (MPLS) models were built using NIR spectra acquired
in the vineyard, on grapevine leaves, with a portable spectrophotometer working on the
spectral range between 1600 to 2500 nm. Spectral measurements were acquired on the
adaxial side of 200 individual leaves (20 leaves per cultivar) of ten (Vitis vinifera L.) varieties.
Sequential minimal optimization (SMO) algorithm was used for the training of a SVM
for varietal discrimination. The classifier’s performance for the 10 varieties surpassed the
94.9% mark. For water status assessment, the predictive model based on MPLS using the
reflectance spectra of four cultivars, and the first and second derivative, yielded a R?=0.83
for stem water potential (W .,,), which is widely recognized as an integrative indicator of
whole-vine water status, but destructive and very laborious. These results show the power
of the combined use of data mining and non-invasive sensing for grapevine phenotyping and

their usefulness for the wine industry.
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1. Introduction

The study of grapevine phenotype, which involves its physical and biochemical traits as a result of the
interaction of its genotype and the environment, is a key topic in modern viticulture. There are thousands
of Vitis vinifera L. grapevine varieties worldwide [1] and their cultivation, wine quality potential and the
price paid for their grapes is variety dependent [2]. Also, the ability of set up irrigation rules is based
on soil water balance calculations or direct measures of soil moisture. Nonetheless, these methods could
not be totally reliable due to soil heterogeneity and are likely to return cumulative errors [3].

Current methods to address variety discrimination include visual ampelometry [1], wet chemistry
genetic [4] and isoenzyme analyses [5], and very recently hyperspectral imaging under laboratory
conditions [6]. However, identification of grapevine varieties under field conditions in order to recognize
grapevines of not-allowed cultivars in certain appellation regions worldwide or unknown vines in older
vineyards, where more than a single cultivar was often planted is of great interest in viticulture.

In terms of the plant’s water status, midday stem water potential (¥ .,,) has been widely accepted as
a useful and reproducible index of the plant water status, also proposed as a more integrative indicator
of vine water condition [7], yet still this method requires time-consuming and destructive ways to carry
out the measurement.

Spectroscopy is based on the interaction of electromagnetic radiation with matter at different
wavelengths. The use of local spectroscopy for plant variety discrimination has been applied in
controlled indoor environments in several crops, such as bayberry [8] and strawberry [9] using LOCAL
algorithm and partial least squares as discrimination methods, respectively, and outdoors in tomato [10].
Several works have demonstrated the suitability of leaf reflectance to evaluate grapevine and other crops
water status [12—-15].

This work discusses the use of data mining applied to non-invasively retrieved data to yield key

information for plant phenotyping in the frame of precision viticulture.

2. Materials and methods

2.1. Spectra collection

For varietal discrimination, spectral measurements were acquired under field conditions on the adaxial
side of 200 individual leaves (20 leaves per cultivar) of 5 red: Cabernet Sauvignon, Carmenere,
Tempranillo, Pinot Noir, Caladoc, and 5 white: Viura, Treixadura, White Grenache, Pedro Ximenez,
Viognier (Vitis vinifera L.) varieties. For stem water potential estimation, spectral measurements were
acquired under field conditions on the adaxial side of 80 individual leaves (20 leaves per cultivar) of 4
red: Tempranillo, Grenache, Cabernet Sauvignon and Marselan (Vitis vinifera L.) varieties. The stem
water potential was measured after spectra acquisition using a Scholander pressure Chamber (Model 600,
PMS Instruments Co., Albany, USA). All measurements were taken in a commercial vineyard located in
Navarra (Spain) during the ripening period of season 2012.

An integrated handheld NIR spectral analyzer (microPHAZIR™, Thermo Fisher Scientific Inc.,
Waltham, MA, USA), working in reflectance mode (log 1/R) in the range of 1600-2400 nm with a

non-constant interval of 8.7 nm (pixel resolution 8 nm, optical resolution 12 nm) was used.



Sensor integration time was 600 ms. The device was equipped with quartz protection to prevent dirt
accumulation. For each leaf, five spectral measurements were acquired and sample temperature during
measurements ranged between 23 to 25°C. Vinyl gloves were used at all times to handle the leaves to
not distort them with external pollutants from hand manipulation.

Figure 1 shows a block diagram describing the experimental setup.
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Figure 1. Experimental setup.

2.2. Spectra processing for variety discrimination

Due to measurement spectral inaccuracies, one sample from Treixadura and another one from White
Grenache were removed. For all cultivars, the average from the five spectral measurements per leaf
was computed and considered the average spectrum per leaf. In order to avoid scattering issues, several
pre-processing algorithms were applied to the spectra: Standard Normal Variates (SNV) followed by a
detrending and a first grade Savitzky-Golay filter (window size: 5).

Support vector machines (SVMs) were used as a learning method for the training of the variety
discrimination model. A SVM was trained using the Sequential Minimal Optimisation (SMO) algorithm
[16] with polynomial kernel and a complex parameter C equals to 3.5.

The accuracy of the trained model was evaluated by using cross-validation and the percentage of
correctly-classified examples.



2.3. Spectra processing for water stress estimation

For all cultivars, the average from the five spectral measurements per leaf was computed and
considered the average spectrum per leaf. Principal component analysis (PCA) was used to reduce
the dimensionality of the data to a smaller number of components, to examine any possible grouping and
to visualize the presence of outliers based on Global Mahalanobis (GH) distance [17].

As spectral pre-treatments, the Standard Normal Variate (SNV) plus Detrending (DT) procedure
was used to remove the multiplicative interferences of scatter, in addition to a derivative mathematical
treatment. Modified Partial Least Squares (MPLS) regression was tested for the prediction of W.,,.
To prevent over-fitting, the assessment of the calibration model was performed by cross-validation.
Chemometric analysis was performed using the WinlSI II software package version 1.50 (Infrasoft
International, Port Matilda, PA, USA) and the Unscrambler software package version 9.1 (CAMO ASA,
Oslo, Norway).

3. Results and Discussion

3.1. Varietal discrimination

The results obtained with the Sequential Minimal Optimization algorithm for the discrimination of
10 grapevine varieties are shown in Table 1.

Table 1. Confusion matrix of the classifier. V: Viura, T: Treixadura, WG: White
Grenache, PX: Pedro Ximenez, Vi: Viognier, CS: Cabernet Sauvignon, C: Carmenere,
Te: Tempranillo, PN: Pinot Noir, Ca: Caladoc. %: Variety correctly classified

percentage.
Classified as
\% T WG PX Vi CS C TE PN Ca %
\% 20 0 0 0 0 0 0 0 0 0 100
T 0 17 0 0 1 0 0 0 1 0 89.5
WG 0 0 19 0 0 0 0 0 0 100
PX 1 0 0 18 1 0 0 0 0 0 90
Vi 0 0 1 0 18 0 0 0 0 1 90
CS 0 0 0 0 0 19 1 0 0 0 95
C 0 0 0 0 0 1 19 0 0 0 95
Te 0 0 1 0 0 0 0 19 0 0 95
PN 0 0 0 0 0 0 0 0 20 0 100
Ca 0 0 0 0 1 0 0 0 0 19 95

The global output resulted in a 95% accuracy in the discrimination of the whole set of varieties, where
188 out of 198 instances were correctly classified.

From an individual point of view, 3 varieties (Viura, White Grenache, Pinot Noir) have reached a
perfect score (100% of correct discrimination), while the remaining varieties obtained values between
90% and 95%.



As it can be seen from the confusion matrix in Table 1, two samples of Pedro Ximenez were
misclassified into Viognier and White Grenache, both being white varieties. The same applied to red
varieties, such as Cabernet Sauvignon and Carmenere, where both exhibited a misclassified sample.
One sample from a white variety (Viognier) was incorrectly classified as a red one (Caladoc). Finally,
two red samples,one from Tempranillo and another one from Caladoc, were misclassified as white
varieties, White Grenache and Viognier, respectively.

NIR information has been used for cultivar identification in plum [20] and strawberry [9] using the
spectra acquired on the fruits. Also, leaves have been recently used for grapevine discrimination through

hyperspectral imaging [6] under laboratory conditions and using the visible range of 380 to 1028 nm.

3.2. Assessment of plant water status

Table 2 shows the best outcomes obtained for ¥, assessment. The correlation coefficient reached
the 0.83 mark in cross-validation, exposing a higher accuracy than that reported in a recent work [15]
(SECV =0.18 and R? = 0.71).

Table 2. Calibration and cross-validation results for stem water potential (V).

Calibration Cross Validation
SEC R2- SECV R2cy
0.13 0.86 0.14 0.83

These results present discrimination and regression models with a high precision, that shows how
accurate the information retrieved from non-invasively acquired NIR spectra in the range of 1600 to
2500 nm of grapevine leaves can be for the discrimination of grapevine varieties and the assessment of

vineyard water status using different data mining approaches.

4. Conclusions

The remarkable performance of the developed models under field conditions paves the way for the
use of data mining algorithms in combination with non-invasive sensing tools — such as a portable NIR
analyzer — as powerful phenotyping and water stress assessment methods in viticulture and other crops.
These results open a gateway for the fast and non-destructive varietal classification and water status

estimation in viticulture and — potentially — in general agriculture.
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