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Abstract: The universe is dominated by a non-zero energy of the vacuum (ρஃ) that is making 

the expansion of the universe accelerate. This acceleration produces a cosmic event horizon 

with an associated entropy ܵாு	~	ߩ௸ି ଵ [1]. Thus, the smaller the value of ߩ௸, the larger the 

entropy of the event horizon. When this entropy is included in the entropy budget of the 

universe, it dominates the entropy of the next largest reservoir, supermassive black holes, by 

19 orders of magnitude: 10122 k >> 101°3 k. Here we address the issue of how one might 

apply the maximum entropy production principle (MEPP) [2] to a cosmological scenario in 

which ߩ௸ is treated as a variable. The growth of ܵாு is a maximum when the energy density 

of the vacuum is a minimum, greater than zero. We derive an entropy-based probability for 

the values of ߩ௸ and we find that low values of ߩ௸ are most probable: P(ߩ௸)~	 ଵఘ౻మ ݔ݁	 ቂ ଵఘቃ. 
This probability distribution is an MEPP-based constraint on ߩ௸  that is independent of 

anthropic constraints and may help explain why the observed value of ߩ௸ is ~2 orders of 

magnitude lower than expectations based on a combination of anthropic constraints and 

quantum physics [3]. 

Keywords: entropy of the universe; maximum entropy production principle; cosmological 

constant  

 

1. Introduction 

The universe is far from equilibrium and is producing entropy. However, it cannot export this entropy 

to any external universe. Thus, the entropy of the universe is going up (Figure 1). But is the entropy of 
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the universe going up at a rate that one could call a maximum rate? Does it obey the maximum entropy 

production principle (MEPP)? Is there a range of configurations available to the entropy-producing 

processes in the universe, among which the actual configuration is one that produces the maximum 

amount of entropy? Was there a range of ߩ௸ values available from which a most probable value emerged 

that maximized entropy production? 

When the entropy of the cosmic event horizon [1] is included in the entropy budget of the universe 

(second inventory described in [4]), it dominates all other contributions. Our universe has an event 

horizon because the expansion of the universe is accelerating due to the vacuum energy density ߩ௸ 	> 	0 

(Eq. 2). The entropy of the supermassive black holes within our event horizon is 1.2ି.ାଵ.ଵ 	× 	10ଵଷ	݇ and 

dominates all other sources of entropy except the entropy of the cosmic event horizon which is 2.6	 ±0.3	 ×	10ଵଶଶ k [4]. Thus, the entropy of the cosmic event horizon dominates the entropy of all other 

sources by 19 orders of magnitude: 10122 k >> 101°3 k. The main entropy production mechanism is the 

growth of the entropy of the cosmic event horizon. Our goal in this paper is to summarize what is known 

about cosmic event horizon entropy and try to more precisely formulate the question: Is cosmic event 

horizon entropy production maximal? 

First we describe the entropy of event horizons, then we discuss the rate of change of the entropy of 

the cosmic event horizon. Finally, we compute an entropy-based constraint that (in combination with 

anthropic constraints and quantum physics) may resolve some tension between the observed and 

predicted values of ߩ௸. 

  

Figure 1. Entropy as a function of time, and of scalefactor a(t), in the various components 

of the universe within the cosmic event horizon. Reheating at the end of inflation before ~ 

10−34 s increased the entropy to ~ 109° k. The entropy of the cosmic event horizon began to 

dominate the entropy in radiation at about 10−15 s after the big bang, and has increased 

steadily until recently as it approaches its maximum value of ~10122 k in a cosmological 

constant dominated universe. The entropy in black holes (both stellar BHs and supermassive 

black holes, SMBHs) increased rapidly as a result of structure formation during the epoch of 
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matter domination and is still increasing. Black hole entropy will reach a peak sometime 

within the next few billion years and will then decrease as the comoving size of the cosmic 

horizon shrinks (Figure 2, top panel) and black holes cross over the cosmic event horizon 

carrying their entropy with them [5]. These three major processes (reheating, the growth of 

the cosmic event horizon and black hole formation) are summarized in Table 1. Figure 

modified from [4]. 

Table 1. Entropy production during cosmological epochs when entropy increased the most. 

 
Reheating and
Baryogenesis 

Growth of the 
cosmic Event 

horizon 

Black hole 
formation 

Entropy ΔS produced [k] 109° 10122 10112 

Time frame Δt [s] 10−34 1017 1018 

Entropy production 
ΔS/Δt [k/s] 

10124 101°5 
1094 

 ܴாு(ݐ) is the distance that light will be able to travel between now and the infinite future, normalized 

to the scalefactor at any time ݐ′. Notice that for the future time interval t < t' < ∞ , we have a(t)/a(t') < 1. 

The integral in Eq. 2 can be thought of as a converging infinite series, where a(t)/a(t') is the factor 

responsible for the convergence of an otherwise diverging integral. 

2. Methods: Cosmic Event Horizons 

In 1956 Rindler [6] showed that a universe with a scalefactor ܽ(ݐ) possessed a particle horizon ܴ௦(ݐ)	that defines the boundary of the observable universe (the distance that light has travelled from 

the big bang until now): 

  ܴ௦(ݐ) = ܿ	(ݐ)ܽ	  	ௗ௧ᇱ(௧ᇱ)௧  ,      (1) 

where c dt' is the infinitesimal distance that light travels at time t'. This distance is scaled up to its current 

size using the ratio of the scalefactor today a(t), divided by the scalefactor at earlier times, a(t'). Since 

the universe is expanding, this ratio is greater than one: a(t)/a(t') > 1. Rindler also showed that if the 

condition 

 ܴாு(ݐ) = (ݐ)ܽ  	ௗ௧ᇱ(௧ᇱ)ஶ௧ < 	∞     (2) 

were satisfied, the universe possessed a cosmic event horizon at distance ܴாு(ݐ) from all observers. 

When	 ሶܽ  .increases with time (when the expansion of the universe is accelerating), Eq. (2) converges (ݐ)

This convergence is what gives our accelerating universe a cosmic event horizon. Events beyond the 

cosmic event horizon will never be observed. The faster ሶܽ  will (ݐ)increases with t, the smaller ܴாு (ݐ)

be. In a purely radiation-dominated universe, ܽ	~	ݐଵ/ଶ, and therefore ሶܽ  decreases with time. Thus, the	(ݐ)

integral in Eq. (2) diverges, and there is no cosmic event horizon. In a purely matter-dominated universe, 
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ଶ/ଷݐ	~	ܽ  and again there is no cosmic event horizon. In a purely ߩஃ -dominated universe, ܽ	~	݁ு௧	~݁ටఴഏಸഐ౻య ~݁ට౻య	௧. Thus ሶܽ  increases with time and Eq. (2) is satisfied and yields (ݐ)

  ܴாு(ݐ	) = ට ଷమ଼గீఘ 	= ටଷమஃ  ,    (3) 

where we have used Λ	 = ௸ߩܩߨ8	  [e.g. 7]. The smaller the cosmological constant, the greater the 

distance to the cosmic event horizon, and the larger the entropy of the cosmic event horizon. 

The universe is not purely dominated by only one component. It has gone through three epochs and 

is now entering the fourth. The sequence of dominant components is: 1) the false-vacuum-energy 
inflation epoch dominated by ߗ௸ , 2) the radiation epoch dominated by ߗ	 , 3) the matter epoch 

dominated by ߗ	 , 4) the vacuum-energy epoch dominated by the ߗ௸	of the current universe [8,9]. 

Using Eq. (2) to compute the distance to the cosmic event horizon in our more complicated universe (or 

any hypothetical homogeneous, isotropic universe described by general relativity) with a mixture of 

components, we need to know the functional dependence of the scalefactor ܽ(ݐ) on the contents of the 

universe. That is given by the Friedmann equation which, in a spatially flat universe is [8,9], 

ଶܪ  = ଶܪ	 ቂߗ௸	ܽ + ܽିସ	ߗ + ܽିଷ	ߗ +  ቃ  (4)ܽ	௸ߗ

where ܪ	 = ሶ is Hubble's constant and ܪ is its current value. Eqs. (2) & (4) were used to plot the event 

horizon for our universe in Figure 2. Notice that in the lower panel of Figure 2, at early times, ܴாு 

starts out small and thus, the entropy of the cosmic event horizon was small.  

In 1998, it was discovered that the expansion of the universe is accelerating [10,11]. The consensus 

view to explain this acceleration is that the universe is filled with a vacuum energy or cosmological 

constant, which can be represented either as a mass density ߩ௸ (dimensions mass/volume) or by the 

Greek letter Λ (dimensions time−2). These are related by ߉ = ଶܿ߉ e.g. [7]. Some authors use ௸ߩܩߨ8  .e.g. [8, p 79, eq. 3.49] in which case the dimensions of Λ are length−2 ,௸ߩܩߨ8=

Most of the growth of ܴாு(ݐ	) occurs for scalefactors a < 0.4 which corresponds to a time ݐ	 ≲ 4 

billion years after the big bang -- before the expansion of the universe started to accelerate. This is seen 

most easily in the bottom of the lower panel of Figure 2. This growth happens during the radiation and 

matter dominated epochs. However, the final value that ܴாு(ݐ	) can grow to, is set by the constant ߩ௸ 

(Eq. 3). When there are no other energy components in the universe, ߩஃ also sets the initial value of ܴாு which is equal to the final value (Eq. 3). Thus, the entropy cannot increase since it starts and 

finishes with the same horizon entropy. When there are other components (radiation and matter, as there 

is in our universe), the decrease in ሶܽ (ݐ)  during the radiation and matter dominated epochs makes ܴாு(ݐ	) initially small, allowing it to grow and asymptotically approach the final value set by ߩ௸ alone 

(Eq. 3).  

When the entropy of the universe starts out low, the vacuum energy density that will maximize 

entropy production is one that has a minimal ߩஃ 	≳ 	0. This ensures a maximum final value for ܵாு 

(Eq. 6). However, if there were no other radiation or matter in such a minimal-ߩஃ universe, entropy 

production would be zero because the universe would have started out at maximal entropy. Thus we 

need some other components to ensure that the universe does not start with a large event horizon. How 

much of these other components is necessary to maximize entropy production? If we want the entropy 
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to grow as fast as possible in the shortest amount of time, we need the universe to spend as short a time 

as possible in the radiation-dominated and matter-dominated phases. Thus we want reheating to produce 

a minimal value of (ߩ୰ (	୫ߩ	+	 	≳ ஃߩ	 	≳ 	0.  

 

 

Figure 2. The size of the cosmic event horizon depends on whether one is using comoving 

distances (top) which do not increase with the expansion of the universe, or proper distances 

(bottom) which do increase with the expansion of the universe. The dotted lines represent 

the world lines of galaxies. They remain at constant distances from each other in comoving 

coordinates and separate from each other in proper coordinates because the universe is 

expanding. Our galaxy is the vertical line at “zero” in each panel. The age of the universe, 

13.8 billion years, is indicated by the horizontal line labelled "observable universe today" 

denoting the current positions of galaxies that we have been able to see. The width of the 

yellow area in the lower panel is the diameter of the cosmic event horizon ( = 	2	ܴாு). The 

cosmic event horizon is shrinking in comoving coordinates and this is responsible for 

galaxies, black holes and photons passing through the event horizon, never to be seen again. 

The event horizon is expanding in proper coordinates, but its expansion is slowing down. 

Most of its growth occurred before a scale factor a ~ 0.4. See Eqs. (1) and (2) for the 

definitions of the particle horizon and cosmic event horizon respectively. The scale factor 

“a” is shown on the right hand y-axis of each panel. Figure from [4]. 
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The distance to the cosmic event horizon, ܴாு(ݐ	) is generally time-dependent, increasing when the 

universe is dominated by an energy component with an equation of state w > −1 (radiation and matter) 

and remaining constant when the universe is ߩஃ-dominated (assuming a cosmological constant, w = −1). 

Since our universe is presently entering ߩஃ-domination, the growth of the event horizon has slowed, and 

it is almost as large now as it will ever become (bottom panel of Figure 2). 

The cosmic event horizon is the source of de Sitter radiation, also characterized by a specific 

temperature [1,6,7,8]. It is the minimum possible temperature of the universe and is known as the de 

Sitter temperature ௗܶௌ. We can express the entropy of the cosmic event horizon as a function of mass, 

area, size, temperature or density: ݁݊ݕݎݐ = (ݏݏܽ݉)݂ 	= (ܽ݁ݎܽ)݂	 	= (݁ݖ݅ݏ)݂	 	= (݁ݎݑݐܽݎ݁݉݁ݐ)݂ = 	ாுܵ (5)   (ݕݐ݅ݏ݊݁݀)݂ = ߨ4 ீℏ ݉ாுଶ = ଵସ యீℏ ாுܣ = యீℏ ாுଶܴߨ = 	 ଵଵగ ℏఱீ ଵቀೄమ ቁమ 	= ଷ	଼ 	 ఱீమℏ	 ଵఘ	.   (6) 

These parameters are not independent of each other and are related by: 
 ݉ாு = ଵସ√గ		మீ 	ඥܣாு	, ாுܣ = ாுଶܴߨ4 	, ܴாு 	= ଵସగ 	ℏ 	 ଵቀ்ೄ ଶൗ ቁ , ்ೄଶ 	= 	 ଵ√గ	ℏ√ீ 	ඥߩஃ	(7) 

 

The energy density of the vacuum has been measured from cosmological observations of Type Ia 

supernovae and of the cosmic microwave background radiation. They yield ߩஃ = 10−29 g/cm3 (or since Λ	 =  Λ =1.2 x 10−35 s−2). Inserting this value into Eq. (6) yields the entropy of the cosmic event	ஃ,ߩܩߨ8	

horizon ܵாு		~	2.6	 ± 	0.3	 ×	10ଵଶଶ	݇. Inserting this value for ߩஃ into Eq. (7) yields: TdeS = 2.4 x 10 −3° 

K. 

We are interested in trying to apply MEPP to the universe, so we are interested in the rate at which 

the entropy of the cosmic event horizon changes. The value of ߩஃ determines the final and largest value 

of the entropy of the cosmic event horizon. So the rate of entropy production would be different 

depending on how large a value the entropy asymptotically approaches. In our universe, Figure 1 and 

the third row of Table 1 summarize the rates of entropy production: ΔS/Δt. The universe had its highest 

entropy production rate (~	10ଵଶସ	݇/ݏ) for a very short time during reheating and produced an entropy 

of ~	10ଽ	݇. The universe produced the largest amount of entropy (~	10ଵଶଶ	݇) after reheating, due to a 

large, sustained entropy production, (~	10ଵହ	݇/ݏ) as the cosmic horizon grew. 
From Eq. (6) ܵாு	(ݐ) ∝ ாுଶ(ݐ)ܴ	 	. Entropy production is the time derivative, 

 

  
ௗௌಶಹௗ௧ 	∝ 	ܴாு 	ௗோಶಹௗ௧ 	.    (8) 

 

In a purely ߩஃ - dominated universe with ߩஃ 	=  the cosmic event horizon has a constant ,ݐ݊ܽݐݏ݊ܿ	

distance (see Eq. 3). Therefore, 
ௗோಶಹௗ௧  = 0, entropy is constant, and in Eq. (8), entropy production is zero. 

Our universe is not a purely ߩஃ - dominated universe. This allows for the early high values of	ௗோಶಹௗ௧  seen 

in the lower panel of Figure 2 for ܽ	 ≲ 	0.4 . 

Most cosmologists assume that some kind of symmetry breaking in the early universe allows us to 

treat ρஃ,   and ρ୫ as variables that could have taken on values different from the ones they took on inߩ	
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our universe [e.g. 3, 12, 13, 14,15]. If ρஃ could have taken on a value from some range -- if ρஃ could 

have been different -- then in some sense the universe was able to explore a range of values for the 

cosmological constant ߩஃ to maximize entropy production (Eq. 8). 

 

3. Results and Discussion 

 

There are various constraints on the possible values of ߩஃ within an assumed ensemble of universes 

(the multiverse). Using a quantum cosmological approach, Hawking [16] described a distribution of 

values for ρஃ that peaked at ρஃ = 0. In 1989, Weinberg [3] recognized anthropic constraints on ߩஃ: 

“…if it is only anthropic constraints that keep the effective cosmological constant within empirical 

limits, then this constant should be rather large, large enough to show up before long in astronomical 

observations.”  

Starting with Eq. (6) ܵாு = 	 ଷ଼	 ఱீమℏ	 ଵఘ we obtain the derivative 

 

    
ௗௌಶಹௗఘ 	∝ − ଵఘమ .   (9) 

 

Any system unconstrained by initial conditions or evolutionary entrenched structure, is more likely 

to be in a high entropy state than a low entropy state because there are more microstates W available in 

high entropy states. Thus, the probability 
ௗௗௌಶಹ	that Sେୌ will take on a particular value, is proportional 

to the number of microstates for that value, and since ܵ	 = 	݇	݈݊	ܹ, we have, 

 

 	 ௗௗௌಶಹ 	∝ 	ܹ(ܵாு) 	∝ ݔ݁	 ቂௌಶಹ ቃ ∝ ݔ݁	 ቂ ଵఘቃ ,   (10) 

 

where we have used Eq. (6) in the last step. Using the substitution rule of integration applied to 

probability densities [17] we can write the probability 
ௗௗఘ that ߩ௸ will take on a particular value: 

 

   
ௗௗఘ 	= ௗௗௌಶಹ 	ቚௗௌಶಹௗఘ ቚ ,     (11) 

 

which, with Eqs. (9) and (10) can be written, 

 

  
ௗௗఘ 	∝ ݔ݁	 ቂ ଵఘቃ	 ଵఘమ       (12) 

4. Conclusions 

Equation (12) is represented in Figure 3 by the green curve labelled “entropics”. 

Combining the upper anthropic bound (ߩ௸ ≲ 10ିଶ݃/ܿ݉ଷ) with the quantum physics prediction (ߩ௸ 

~1091 g/cm3), suggests that ߩ௸ should take on the maximum value consistent with the anthropic bound -

௸ߩ should be so large that galaxies would barely have had time to form before the acceleration due to ௸ߩ -  stops structure formation and accelerates everything beyond the cosmic horizon. However, the 

observed value of ߩ௸ is ~ 100 times smaller than the anthropic bound. If the anthropic bound and the 
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quantum physics prediction were the only constraints, then ߩ௸ should be ~100 times larger than the 

actual observed value. Thus, there may be another constraint. The entropic constraint in Eq. (12), may 

be such an additional constraint. Equation (12) is an MEPP-based probability distribution and is a 

constraint on ߩ௸ that is independent of anthropic constraints and may help explain why the observed 

value of ߩ௸ is ~2 orders of magnitude lower than expectations based on a combination of anthropic 

constraints and quantum physics [3]. 

 

 

Figure 3. Notional constraints on the value of the cosmological constant. Quantum physics 

suggests that the energy density of the vacuum ߩ௸ should be ~1091 g/cm3[e.g. 3]. This is ~	10ଵଶ  larger than the observed value 10ିଶଽ	g/cm3. The blue curve labelled “quantum 

physics” represents this constraint. If the value of ߩ௸ is too high (ߩ௸ ≳ 10ିଶg/cm3), the 

acceleration of the universe begins much earlier than it did in our universe -- clouds of gas 

accelerate away from each other instead of collapsing. Thus there is no time for galaxies and 

stars to form [3]. If the value is too low, ߩ௸	≲ 	−10ିଶ then the universe recollapses without 

having lasted long enough for biology or observers to evolve [12,13,14,15]. These limits are 

shown by the vertical red lines labelled “anthropics”. The green curve labelled “entropics” 

represents Eq. (12), which is the result of using a maximum entropy argument to derive the 

probability distribution of ߩ௸. 
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