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Abstract: Different systems, e.g., the anomaly-based network intrusion detection system
(A-NIDS), have been continuously developed in order to ensure integrity, availability, and
confidentiality of networks. In this paper, we present a structured and comprehensive
overview of the research into entropy-based A-NIDS with the intention of providing
researchers a quick introduction to essential aspects of this topic. The main components
of the general architecture of A-NIDS based on Entropy are discussed. The achieved high
detection rates prove the effective use of entropy. Finally, some open issues in entropy-based
network traffic anomaly detection are also highlighted.
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1. Introduction

Given a traffic network and its set of the selected traffic features X = {X1, X2, . . . , Xp}, and N time
instances of X , the normal and abnormal behaviors of the instances can be studied. The space of all
instances of X builds the feature space which can be mapped to another space by employing a function
such as entropy. In the literature, Shannon and generalized Rényi and Tsallis entropy estimators, as well
as probability estimators (Balanced [1], Balanced II [2]), are used.

Chandola et al. (2009) [3] states that the term anomaly-based intrusion detection in networks refers to
the problem of finding exceptional patterns in network traffic that do not conform to the expected normal
behavior. This concept is accepted by the Internet Community.
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A generic architecture of entropy-based A-NIDS is presented in figure 1, see [4]. It usually consists
of two stages: the training and the testing stage. In the training stage, using a database of “normal”
or free-anomaly network traffic, feature extraction, windowing, and entropy calculation modules, a
“normal” profile is found. In the testing stage, using feature extraction, windowing, and entropy
calculation modules, anomalies in the current network traffic are detected and classified.

Figure 1. General architecture of entropy-based A-NIDS.

Table 1 presents the notation used in this paper.

Table 1. Notations.

Symbol Meaning

Dρ(P ||Q) Information divergence, where ρ is the order of the information divergence.

D1(P ||Q) Kullback-Leibler divergence

f(x;βg) Discriminant function where βg are class-specific parameters

HR(•, q) Rényi entropy

HS(•) Shannon entropy

HT (•, q) Tsallis entropy

H(X;Y ) Joint entropy

H(Y |X) Conditional entropy

I(X;Y ) Mutual information

pi Probability of occurrence of xi element

p(x, y) Joint probability

p(x|y) Conditional probability

q Parameter of generalized entropies

SX m-dimensional space of all traffic features

SN p-dimensional space of free-anomaly traffic features

Wi(L, τ) i-th sliding window with L packets and τ as the overlapping parameter

X,Y, Z ∈ Rn, n = 1, 2, . . . , k Random variables

x, y, z Instances of random variables X,Y, Z.

Chandola et al. (2009) [3] present “a survey in anomaly detection, grouping existing techniques into
different categories based on the underlying approach adopted by each technique”. Bhuyan et al. (2014)
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[5] provides an excellent survey in network anomaly detection describing six distinct classes of methods
and systems. However, these surveys are not focused directly on entropy-based A-NIDS.

This paper presents a structured and comprehensive overview of the research into entropy-based
A-NIDS with the intention of providing researchers a quick introduction to essential aspects of this
topic. Using a general architecture of entropy-based A-NIDS, the different techniques proposed in the
state-of-the-art of the main modules are shown. The measures of information used by researchers and
the most important metrics for testing the performance of the detection and classification are presented.
We also highlight some open issues in entropy-based network traffic anomaly detection.

The next sections describe the main modules of the entropy-based A-NIDS. Section 2 presents the
main databases used for researchers in the field. Section 3 shows the most commonly employed features
in network traffic and the windowing approach. Section 4 introduces the mathematical background,
including Shannon entropy, generalized entropies, Mutual information, Kullback-Leibler divergence,
conditional entropy, and the techniques to estimate their values. Section 5 presents the decision functions
defined by the researchers in the detection stage. Section 6 shows the approaches employed in the
classification stage and the most widely used metrics for evaluating the A-NIDS. Section 7 contains the
conclusions of the paper and some important open issues of this topic.

2. Databases

Different databases have been used to evaluate the A-NIDS, and these databases are divided into two
groups: synthetic and real.

The synthetic databases are generated artificially, e.g., the MIT-DARPA 1998, 1999, 2000 databases1,
which include five major categories: Denial of Service Attacks (DoS), User to Root Attacks (U2R),
Remote to User Attacks (R2U) and probes.

Some real public databases are: CAIDA2, which contains anonymized passive traffic traces from
high-speed Internet backbone links, and the traffic data repository, maintained by the MAWI3 Working
Group of the WIDE Project. Other researchers have created their own databases in different universities,
e.g., Carnegie Mellon University, Xi’an Jiaotong University, and Clemson University (GENI[6]), or
traffic collected from backbone in SWITCH, Abilene, and Géant.

Nowadays, there is no public database large enough to exhaustively test and compare different
algorithms in order to extract significant conclusions about their performances and their capabilities
of classification.

3. Feature Extraction

Motoda H. and Liu H. (2002) [7] state that feature selection is a process that chooses a subset
of M features from the original set of N features M ≤ N so that the feature space is optimally
reduced according to a certain criterion [8,9]. Feature extraction is a process that extracts a set of new

1 http://www.ll.mit.edu/ideval/index.html
2 https://www.caida.org/data/passive/passive_2012_dataset.xml
3 http://mawi.wide.ad.jp/mawi/

http://www.ll.mit.edu/ideval/index.html
https://www.caida.org/data/passive/passive_2012_dataset.xml
http://mawi.wide.ad.jp/mawi/
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features from the original features through some functional mapping [10]. Assuming that there are N
features Z1, Z2, . . . , ZN after feature extraction, another set of new features X1, X2, . . . , XM(M < N)

is obtained via the mapping functions Fi, i.e. Xi = Fi(Z1, Z2, . . . , ZN).

Among the algorithms used to reduce the number of features in network traffic anomaly detection
are: PCA [11], Mutual Information and linear correlation [12], decision tree [13], and maximum entropy
[14].

In network traffic, the most commonly employed features are [2,15–19]: source and destination IP
addresses and source and destination port numbers. Other features extracted from headers are: protocol
field, number of bytes, service, flag, and country code. Zhang et al. (2009) [20] divided the size of
packets into seven types and Gu et al. (2005) [21] defined 587 packet classes based on the port number.

At flow4 level the features selected were: flow duration, flow size distribution (FSD), and average
packet size per flow. For KDD Cup 99, 41 features or a subset were employed [12,13]. On the other
hand, Tellenbach et al. (2011) [22] used source port, country code and others, constructing the TES as
input data.

3.1. Windowing in Network Traffic

Window-based methods group consecutive packets or flows based on a sliding window. The ith
window of size L packets is represented as Wi(L, τ) = {packk, packk+1, . . . , packk+L}, with k = iL−
iτ, where τ is the overlapping and τ ∈ {0, 1, . . . , L − 1}. When the window size is given by time, L
can be different in each window. Windowing is performed in two ways: overlapping (τ 6= 0) and non
overlapping (τ = 0) windows. The window sizes most commonly used are: 5 min [15,16,23–25], 30

min, 1 min, 100 sec, 5 sec and 0.5 sec. Some researchers use windows with a fixed length L = 4096

[19], 1000 [26], and 32 [4] packets. Therefore, the main objective of windowing is to reduce the data
volume.

4. Entropy Concepts Used in Network Traffic Anomaly Detection

Let X be a random variable which takes values of the set {x1, x2, ..., xM}, pi := P (X = xi) the
probability of occurrence of xi, and M the cardinality of the finite set; hence, the Shannon entropy is:

HS(X) = −
M∑
i=1

pi log (pi) . (1)

Based on the Shannon entropy [27], Rényi [28] and Tsallis [29] defined generalized entropies, which
are related to the q-deformed algebra. The Rényi entropy is defined as:

HR(X, q) =
1

1− q
log

(
M∑
i=1

pqi

)
(2)

and the Tsallis entropy is

4 An IP flow corresponds to an IP port-to-port traffic exchanged between two IP addresses during a period of time T.
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HT (X, q) =
1

q − 1

(
1−

M∑
i=1

pqi

)
, (3)

when q → 1 the generalized entropies are reduced to Shannon entropy. In order to compare the changes
of entropy at different times, the entropy is normalized, i.e.,

H̄(X) =
H(X)

Hmax(X)
. (4)

For generalized entropies, the values q = 0.9 and q = 1.1 to detect DoS and DDos atacks have been
used by [30,31], respectively. The sets q ∈ {−3} ∪ {−2,−1.75, ..., 1.75, 2}, q = {1, 2, 3, . . . , 15} and
q = {1, 2, 3, . . . , 10} were used to detect DDos and scanning attacks, and low-rate and high-rate DDoS
by [22,32,33].

4.1. Kullback-Leibler divergence

Consider two complete discrete probability distributions P = (p1, p2, . . . , pn) and Q =

(q1, q2, . . . , qn), with
∑n

i=1 pi =
∑n

i=1 qi = 1, 1 ≥ pi ≥ 0, 1 ≥ qi ≥ 0, i = 1, 2, . . . , n. The
information divergence is a measure of the divergence between P and Q and is defined by [28]:

Dρ(P ||Q) =
1

ρ− 1
log

(
n∑
i=1

pρi q
1−ρ
i

)
, ρ ≥ 0, (5)

where ρ is the order of the information divergence. Consequently, the smaller Dρ(P ||Q) is, the closer
the distributions P and Q are. Dρ(P ||Q) = 0 iff P = Q. When ρ → 1 the Kullback-Leibler (KL)
divergence [34] is obtained

D1(P ||Q) =
n∑
i=1

(
pi log

(
pi
qi

))
, ρ→ 1. (6)

4.2. Mutual information

The conditional entropy of a variable Y given X, with alphabet X and Y, respectively, is defined as:

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log (p(y|x)) (7)

= −
∑
x∈X

∑
y∈Y

p(x, y) log (p(y|x)) . (8)

The mutual information (MI) [35] between two random variables X and Y is a measure of the
amount of knowledge of Y supplied by X or vice versa. If X and Y are independent, then their mutual
information is zero. The MI of two random variables X and Y is defined as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X;Y ) (9)
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where H(•) is entropy, H(X|Y ) and H(Y |X) are conditional entropies, H(X;Y ) is the joint entropy
of X and Y, defined as

H(X;Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log (p(x, y)) (10)

where p(x, y) is the joint probability mass function.
The MI equation can be written as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(11)

where p(x) and p(y) are marginal probability mass functions of X and Y , respectively. In order to
estimate the MI between X, Y, it is necessary to estimate p(x, y).

4.3. Entropy calculation

As the full probability distribution is generally not known or not completely known, different
probability estimators are used, e.g., relative frequency, Balanced, and Balanced II, and consequently,
a “true” probability distribution is built. The entropy is calculated using these estimators; the more
accurate the estimators, the better the entropy estimates.

Rahmani et al. (2009) [36] noted that time series of IP-flow number and aggregate traffic size are
strongly statistically dependent, and when an attack occurs, it causes a rupture in the time series of
joint entropy values. In order to calculate the joint entropy H(X;Y ) they employed p(x, y) of the time
series X and Y using either the Gamma density probability function (when the number of connections
was small) or the central limit theorem (when the number of connections was large enough). Liu et al.
(2010) [18] calculated the conditional entropy H(Y |X) where Y and X are two of the most widely used
traffic variables: source and destination Ip addresses.

Amiri et al. (2011) [12] used an estimator of MI developed by Kraskov [37], which employs entropy
estimates from k-nearest neighbors distances. Velarde-Alvarado et al. (2009) [2] estimated entropy
values using the balanced estimator II as a probability estimator.

5. Anomaly detection

An anomaly in network traffic is a data pattern that does not conform to those representing a normal
traffic behavior. Therefore, anomaly detection is a broad field, where numerous anomaly detection
methods are used for different applications.

Assuming that 1) X ∈ Rp is a p-dimensional real-valued random variable with a domain SX ⊂ Rp

representing traffic features, 2) xi are instances of X , i.e. xi ∈ SX , and 3) data patterns of normal
behavior are represented by the subspace SN ⊂ SX , anomaly detection determines whether an instance
xi belongs to SN or not.

The space SX can be partitioned or divided into classes with the help of decision functions, allowing
further classification.
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5.1. Specific Decision Functions

The KL divergence D1(P ||Q) is used as decision functions in [20,21]. In addition, [20] classified the
abnormal situations into different classes. In [38], both KL divergence and Maximum entropy are used.
Yan et al. (2008) [25] used D0.5(P ||Q).

In Santiago-Paz et al. (2015) [4], a decision function is based on the Mahalanobis distance [39]
d2
M(xi), and a second decision function is given by f(xi) =

∑N
i αik(xi,x) − b for One Class-Support

Vector Machine (OC-SVM), where k(xi,x) is a kernel. Huang et al. (2006) [40] computed the Rényi
entropy (q = 3) of the Coiflet and Daubechies wavelets.

In Velarde-Alvarado et al. (2009) [2], used the proportional uncertainty (PU) and the method of
remaining elements (MRE) to detect anomalies. Tellenbach et al. (2011) [22] used Kalman filter, PCA,
and KLE as anomaly detection methods. Ma et al. (2014) [41] established a function decision based on
the entropy of the source IP address Ĥs and the entropy of the destination IP address Ĥd. In [42,43], a
function decision based on entropy and a range of values was used to detect anomalies.

The use of the entropy allows the A-NIDS to achieve high detection rates, see table 2. In addition,
new measures based on entropy should be studied and used as a basis for other decision functions.

Table 2. Results of network traffic anomaly detection using entropy.

Author Information metric Database Anomaly TNR [%]

Gu et al. (2005) KL divergence – Portscan 91.0

Zhang et al.
(2009)

KL
divergence

MIT-DARPA

DoS 87.10
Probe 68.18
R2L 79.49
U2R 60.87

Liu et al.(2010) Conditional entropy CAIDA DDoS 93.0

Ferreira et al.
(2011)

Shannon,
Rényi, Tsallis

KDD Cup 99

DoS 93.18
Probe 79.20
R2L 97.76
U2R 95.05

Amiri et al.
(2011)

Mutual
Information

KDD Cup 99

DoS 90.02
Probe 99.97
R2L 99.98
U2R 95.0

Santiago-Paz et al.(2015) Shannon, Rényi, Tsallis LAN, MIT-DARPA subset Worms, DoS, Portscan 99.83

6. Classification

Gupta et al. (2014) [44] state that given: 1) a training data set of the form {(xi,yi)}, where xi ∈ SX
is a feature vector or data pattern and yi ⊂ {1, . . . , G} is the subset of the G class labels that are known
to be correct labels for xi, 2) a discriminant function f(x; βg) with class-specific parameters βg for each
class with g = 1, . . . , G; then class discriminant functions are used to classify an instance x as the class
label that solves arg maxgf(x; βg).
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Lakhina et al. (2005) [16] apply two clustering algorithms: k-means and hierarchical agglomeration,
using a vector h̃ = [H̃(srcIP), H̃(dstIP), H̃(srcPort), H̃(dstPort)]. Xu et al., (2005) [23] define three
“free” feature dimensions and introduce an “Entropy-based Significant Cluster Extraction Algorithm”
for clustering.

Lima et al. (2011) [13] use the WEKA5 Simple K-Means algorithm , which employs Euclidean
distance as a measure to compute distances between instances and clusters. Support Vector Machine is
applied by Tellenbach et al. (2011) [22] to classify the anomalies. Yao et al. (2012) [45] use the Random
Forests Test.

Santiago-Paz et al. (2014) [19] present the Entropy and Mahalanobis Distance (EMD) based
Algorithm to define elliptical regions in the feature space. In [4], OC-SVM and k-temporal nearest
neighbors are used to improve accuracy in classification.

6.1. The Classifier Metrics

Given a classifier and an instance, there are four possible outcomes:6 TN , FP , FN , and TP . With
these entries, the following statistics are computed [46]: Accuracy (AC) is the proportion of the total
number of predictions that were correct: AC = TN+TP

TN+FP+FN+TP
; True Positive Rate (TPR) is the

proportion of positive cases that were correctly identified: TPR = TP
FN+TP

; True Negative Rate (TNR)
is the proportion of negative cases that were classified correctly: TNR = TN

TN+FP
; False Negative Rate

(FNR) is the proportion of positive cases that were incorrectly classified as negative: FNR = FN
FN+TP

;

and F -measure is a measure of a test’s accuracy: F -measure = 2∗TPR∗AC
TPR+AC

. In addition, Receiver
Operating Characteristic7 (ROC) graphs illustrate the performance of a classifier.

Although, there are several types of distances, classifiers based on new closeness and farness measures
of data patterns and pattern clusters should be studied.

7. Conclusions

This paper provides a structured and comprehensive overview of the state-of-the-art in entropy-based
A-NIDS. Using a general architecture of Entropy-based A-NIDS, the different techniques proposed in
the state-of-the-art of the main modules are shown. The measures of information used by researchers
and the most commonly employed metrics for testing the performance of the detection and classification
are presented. The achieved high detection rates prove the effective use of entropy.

Open Issues

5 http://www.cs.waikato.ac.nz/ml/weka/
6 TN is the number of correct predictions that an instance is negative, FP is the number of incorrect predictions that an

instance is positive, FN is the number of incorrect predictions that an instance is negative, and TP is the number of
correct predictions that an instance is positive.

7 ROC graphs are two-dimensional graphs in which an (FP rate, TP rate) pair corresponding to a single point in Receiver
Operating Characteristic space.

http://www.cs.waikato.ac.nz/ml/weka/
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Nowadays, there is no public database large enough to exhaustively test and compare different
algorithms in order to extract significant conclusions about their performances and their capabilities
of classification. Therefore, the construction of a common database with real “normal” and anomalous
traffic for the evaluation of A-NIDS is needed.

The value of the q parameter for generalized entropies is found experimentally; its correct choice for
the best anomaly detection is an open research problem.

For different networks, the larger the slot size, the more different the entropy behaviors. In the near
future, this behavior including more and recent traces in order to determine whether the learned model
from a certain network can be used in a different network should be addressed.

Another open issue is related to the adequate window size for reducing the data volume, ensuring
good entropy estimates and early detection of anomalies.

The set of decision functions and classifiers with new closeness and farness entropy-based measures
should be enhanced.
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38. Coluccia, A.; DâĂŹAlconzo, A.; Ricciato, F. Distribution-based anomaly detection via generalized
likelihood ratio test: A general Maximum Entropy approach. Computer Networks 2013,
57, 3446–3462.

39. Mahalanobis, P.C. On the generalised distance in statistics. Proceedings National Institute of
Science, India, 1936, Vol. 2, pp. 49–55.

40. Huang, C.T.; Thareja, S.; Shin, Y.J. Wavelet-based real time detection of network traffic anomalies.
Securecomm and Workshops, 2006. IEEE, 2006, pp. 1–7.

41. Ma, X.; Chen, Y. DDoS Detection method based on chaos analysis of network traffic entropy.
Communications Letters, IEEE 2014, 18, 114–117.
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