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Abstract: Dilute suspensions composed of rods are usually described by using the Jeffery’s
model that only considers flow-induced orientation. When the concentration increases rods
interaction cannot be neglected and the simplest way to take it into account is from a diffusion
term that tends to recover an isotropic orientation distribution. However, when considering
CNTs suspensions involving large interaction networks, fractional diffusion better describes
linear viscoelastic tests. In this work we revisit the fractional diffusion model analyzing its
behaviour when applied in nonlinear regimes.
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1. Introduction

It is well known that the process-induced microstructure in short fiber composites and
nano-composites determines the mechanical or functional properties of the final part. Thus, the
development of accurate models and efficient computational solvers is crucial. Industrial applications
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usually involve semi-concentrated or concentrated short fiber suspensions in which particles interaction
occur and their effects must be added to the flow induced orientation.

Suspensions of particles are accurately modeled by tracking each individual particle in the system.
In the dilute regime, the motion of ellipsoidal particles immersed in a Newtonian fluid is accurately
described by Jeffery’s equation [17]. In order to circumvent the difficulties (more computational
than conceptual) related to simulations at the microscopic scale where too many particles are present,
coarser models were introduced. The recent book [7] gives an overview of multi-scale approaches in
computational rheology of rod suspensions.

Suspensions composed of rods have been described at the different scales: microscopic – the scale of
the fiber –; mesoscopic – the scale of the population –; and the macroscopic – the scale of the part –.
The main difficulties appear when the concentration increases, because interactions require appropriate
models to be described. When the concentration is moderate those interactions tend to randomize the
particles orientation and consequently can be accurately described by introducing a diffusion mechanism,
as originally proposed by Folgar & Tucker [11]. The interested reader can refer to many published works
focusing in modelling [6] [12] [13] [14] [15], flows [3] [5] [26] and rheology [21] [23].

In this section we revisit the main modeling elements related to the Jeffery’s and the Folgar & Tucker
models, as well as the difficulties of the last one for describing some experimental rheological tests, that
motivated in our former works the introduction of fractional diffusion [4]. After revisiting the effects
of fractional diffusion in linear viscoelasticity we move to the nonlinear regime to explore the effects of
fractional diffusion on the orientation behavior and its associated rheological properties.

1.1. Revisiting Jeffery’s model

The kinematics of an ellipsoidal particle oriented in the direction given by the unit vector p and
immersed in a Newtonian fluid flow characterized by the velocity gradient ∇v is given by the Jeffery
equation [17]

ṗ = Ω · p + F (D · p−∇v : (p⊗ p)p) , (1)

where 2D = ∇v + (∇v)T , 2Ω = ∇v− (∇v)T , and the shape factor F = r2−1
r2+1

depends on the ellipsoid
aspect ratio r (major to minor axes ratio).

Mesoscopic kinetic theory models result from the coarsening of microscopic descriptions. In kinetic
theory models, the individuality of the particles is lost in favor of a statistical description that substitutes
the microscopic entities with a series of conformation coordinates. In the case of suspension of rigid
rods, the mesoscopic description consists in giving the fraction of rods that at position x and time t are
oriented along direction p, ψ(x, t,p), whose evolution is given by

∂ψ

∂t
+∇x · (vψ) +∇p · (ṗψ) = 0, (2)

that despite its apparent simplicity and linear character it suffers from the so-called curse of
dimensionality because its multidimensional character.

Finally, at the macroscopic scale, the distribution function is substituted with some of its moments
[1,3], for example the second and fourth-order moments, a and A, that read respectively

a =

∫
S

p⊗ p ψ dp, (3)
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and
A =

∫
S

p⊗ p⊗ p⊗ p ψ dp, (4)

where S is the surface of the unit sphere where the orientation vector p is defined.
Here, the level of detail and the involved physics are sacrificed in favour of computational efficiency.

The equations governing the time evolution of a are obtained by taking the time derivative of Eq. (3),
expressing ψ̇ from Eq. (2) and then integrating by parts. This procedure yields

ȧ =

∫
S

(ṗ⊗ p + p⊗ ṗ) ψ dp, (5)

which, in view of Eq. (1), leads to

ȧ = ∇v · a + a · (∇v)T − 2 A : ∇v. (6)

This equation involves the fourth-order moment A. Similarly, the time derivative of the fourth-order
moment involves the sixth-order moment A, and so on. Thus, an approximate closure relation is needed
in order to express the fourth-order moment A as a function of the lower-order moment a. Different
closure relations have been introduced and widely used [2] [10] [19] [25]. In what follows we consider
the hybrid closure relation, that constitutes a good compromise between implementation simplicity and
solution accuracy. It reads:

A = (1− f) Alin + f Aqua, (7)

with f = 1 − dd det(a), d being the dimension of the considered space, d = 2 in 2D and d = 3 in
3D. Thus, the hybrid closure combines the linear closure Alin that results exact when the orientation
distribution is isotropic, and the quadratic one Aqua, at its turn exact in fully aligned suspensions – i.e.
ψ(x, t,p) = δ(p− p̂(x, t))) –. Both are given respectively by

Alin
ijkl(a) = − 1

35
(IijIkl + IikIjl + IilIjk) +

1

7
(aijIkl + aikIjl + ailIjk + aklIij + ajlIik + ajkIil) , (8)

and
Aqua = a⊗ a, (9)

where I is the identity tensor.
For Newtonian suspending fluids, the different concentration regimes (dilute, semi-dilute,

semi-concentrated and concentrated) have been extensively analyzed from the modelling, simulation
and experimental viewpoints.

In the dilute regime, fibre-fibre interactions are neglected altogether. For the semi-dilute regime, these
interactions are usually taken into account in the form of a phenomenological randomizing mechanism,
i.e. one adds a diffusion term in the Fokker-Planck equation to obtain

∂ψ

∂t
+∇x · (vψ) +∇p · (ṗψ) = ∇p(Dr∇pψ), (10)

where Dr is a diffusion coefficient. At the macroscopic scale, this leads to the Folgar & Tucker model
[11],

ȧ = ∇v · a + a · (∇v)T − 2 A : ∇v − 6Dr

(
a− I

3

)
. (11)
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Remark 1. In the 2D case the Brownian term in the previous equation must be replaced by −4Dr(a −
I/2).

The associated constitutive equation reads:

σ = −pI + τ , (12)

with τ given by

τ = 2ηD + 2ηNp (D : A) + βDr

(
a− I

3

)
. (13)

Remark 2. In the 2D case the Brownian term in the previous equation must be replaced by βDr(a−I/2).

1.2. LVE modeling and anomalous diffusion

Linear viscoelastic – LVE – analysis were carried out in [21] to suspensions consisting of
functionalized CNTs. LVE involves small amplitude oscillations applied to an essentially isotropic
suspension (aiso ≈ I

3
). In that case the linear closure relation Alin previously introduced is expected

to be an accurate approximation for describing A.
We proved in [4] that in the simple shear flow involved in LVE analyses the linear closure

approximation yields (A : D)12 ≈ (Alin(aiso) : D)12 = γ̇
15

, from which the shear stress can be
approximated in the general 3D case by

τ 12 ≈ ηγ̇ +
2

15
ηNpγ̇ + βDra12, (14)

with
ȧ12 ≈

γ̇

5
− 6Dra12. (15)

leading to the real and imaginary components of the complex modulus

G′ = βDr
λµω2

1 + λ2ω2
, (16)

and

G′′ = ωη

(
1 +

2

15
Np

)
+ βDr

µω

1 + λ2ω2
. (17)

Thus, the loss modulus is found to scale linearly with the frequency ω of the applied oscillation in
agreement with the experimental findings [21], however, the storage modulus G′ is expected scaling at
small frequencies with ω2 instead of ω0.6 reported in [21], where authors propose the scaling Dr ∝ ωp

to control the slope of G′(ω).
In [8] and [9] the flow-induced bending in the case of non-straight CNTs was proposed as possible

mechanism. In other works, the poly-dispersity and the thermally-activated bending were also considered
as possible mechanisms.

In [4] authors adopted a more phenomenological viewpoint and considered randomizing mechanism
but instead of modeling it from a standard diffusion term, they proposed to consider an anomalous
diffusion modelled using fractional derivatives, as described later.
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1.3. Other anomalous behaviors

Other deviations were noticed when performing other rheological tests like the step strain, when after
applying a step strain the stress relaxation results from Eq. (13), with the fluid at rest:

τ = βDra, (18)

where again τ = τ 12 and a = a12. The orientation evolution results
da

dt
= −6Dra. (19)

Thus an exponential decay for a and the shear stress τ is expected from the model, however a
power-law behaviour is observed experimentally, as reported in [21].

2. Fractional modeling

Anomalous sub-diffusion was revisited in [16] (the interested reader can also refer to the
references therein), justifying the use of non-integer derivatives. In semi-concentrated suspensions
the inter-particles interactions could be at the origin of those non-integer derivatives in the diffusion
mechanisms.

Brownian diffusion in the configurational space (the one related to the particles orientation) implies
ṗ|B

ṗ|B = −Dr

∂ψ
∂p

ψ
, (20)

that leads to the Folgar & Tucker model. Its fractional counterpart reads

dβp

dtβ

∣∣∣∣B = −Dr

∂ψ
∂p

ψ
. (21)

For additional details on fractional derivatives the interested reader can refer to [18] [24].
Now, the time derivative of the second order orientation tensor can be carried out in the usual way

da

dt
=

∫
S

(ṗ⊗ p + p⊗ ṗ) ψ dp, (22)

using the usual rotary velocity partition ṗ

ṗ = ṗ|J + ṗ|B, (23)

where ṗ|J is no more than the Jeffery’s contribution

ṗ|J = ∇v · p− (∇v : (p⊗ p)) p, (24)

whereas the Brownian one makes use of the fractional expression,

ṗ|B = −Dr
d1−β

dt1−β

(
dβp

dtβ

∣∣∣∣B
)

= −Dr
d1−β

dt1−β

(
∂ψ
∂p

ψ

)
, (25)

that introduced into Eq. (22) and proceeding as described in [4], results

da

dt
= ȧ|J − 2dDr

dα

dtα

(
a− I

d

)
, (26)

with α = 1− β, d = 2, 3 in 2 and 3 dimensions respectively, and ȧ|J given by Eq. (6).
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2.1. LVE and step strain tests with fractional diffusion

When considering the LVE and step strain tests previous described but now considering the fractional
orientation model (26) it results the following expressions of the storage and loss modulus [4]

G′ = βDr
λµω2 + µνω1+α

χ2ω2α + (ωλ+ νωα)2
, (27)

and

G′′ = ωη

(
1 +

2

15
Np

)
+ βDr

µχω1+α

χ2ω2α + (ωλ+ νωα)2
. (28)

At small frequencies G′ scales as ω1−α = ωβ . Thus, it suffices to select β = 0.6 (α = 0.4) to describe
the observed experimental behavior. In the case of he stress relaxation after a step strain, with a = a12

and τ = τ 12

τ = βDra, (29)

where now the orientation time evolution results from

da

dt
= −6Dr

daα

dtα
, (30)

When considering α = 0.4 we proved in [4] that both rheological tests fit perfectly with the model
predictions.

However, it was never analyzed the impact of such fractional diffusion in nonlinear rheology, that is,
in the transient evolution of orientation state when applying a steady state flow.

3. Nonlinear rheology with fractional diffusion

In this section, and for the sake of simplicity we consider 2D simple shear flows related to

∇v =

(
0 γ̇

0 0

)
, (31)

and the induced 2D orientation states.
The orientation evolution is computed by integrating in time Eq. (26) with d = 2

da

dt
= ∇v · a + a · (∇v)T − 2A : ∇v − 4Dr

dα

dtα

(
a− I

3

)
, (32)

considering different values of α ≤ 1. For α = 0 (β = 1) the results coincide with the ones associated
to the Jeffery’s model when Dr = 0 and to the Folgar&Tucker model when Dr 6= 0.

In this section we consider the simplest closure relation, the quadratic one A ≈ Aqua expressed by
(9). The initial orientation state is assumed isotropic that corresponds to a(t = 0) = I

2
.
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3.1. Numerical discretization of the fractional orientation equation

The discrete version of the Grünwald-Letnikov formula [24] [18] for the fractional derivative of order
α of function f , t ∈ [a, t], reads:

aD
α
t f(t) =

1

hα

t−a
h∑

m=0

(−1)mgαmf(t−mh), (33)

where h is the discrete time step and gαm is given by

gαm =
Γ(α + 1)

m! Γ(α + 1−m)
(34)

with Γ(·) the gamma function.
Expression (34) is not suitable for large values ofm, for example when considering fine dicretizations,

because the numerical issues related to the calculation of factorial and gamma functions. Thus, is is
preferable using its equivalent form if m = 0, gα0 = 1

if m > 0, gαm = gαm−1
α−m+ 1

m

. (35)

The numerical integration of Eq. (32), considering a quadratic closure linearized by considering a
semi-implicit integration scheme, writes at time step n:

dan

dt
= ∇v · an + an · (∇v)T − 2(an−1 : D)an − 4Dr

dα

dtα
(an − I

2
). (36)

Using the expression of the Grünwald-Letnikov fractional derivative Eq. (36) can be written in the
discrete form:

an − an−1

h
= ∇v · an + an · (∇v)T − 2(an−1 : D)an − 4Dr

1

hα

n∑
m=0

(−1)mgαm(an−m − I

2
) (37)

that accounts for the history of the orientation tensor a weighted by gαm.

3.2. Standard diffusion versus no-diffusion

In the present analysis standard diffusion mechanisms are assumed α = 0 (β = 1 and Dr 6= 0) and
compared with the Jeffery’s solution characterized by the absence of diffusion Dr = 0 in a simple shear
flow;

In this case the flow is characterized by ε̇ = 0 and γ̇ = 1. First we consider the standard diffusion
model β = 1 (α = 0) for evaluating the impact of the diffusion coefficient Dr by considering a null
value (no diffusion at all) and Dr 6= 0.

When applying a shear flow the rods are expected orienting on the flow direction, fact that validates
the quadratic closure relation here considered. Thus, it is expected that the component a11 evolves from
its initial value a11(t = 0) = 0.5 towards a11(t → ∞) ≈ 1 when Dr = 0 or towards a steady state
value ast11 < 1 (the orientation plateau) for Dr 6= 0. In this simulation we would like to conclude if the
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Figure 1. Orientation evolution with and without diffusion mechanisms and standard
diffusion β = 1 (α = 0) in the case of a simple shear flow characterized by γ̇ = 1.
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Figure 2. Off-diagonal orientation evolution with and without diffusion mechanisms and
standard diffusion β = 1 (α = 0) in the case of a simple shear flow characterized by γ̇ = 1.
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introduction of randomizing effects (diffusion) affects or not the orientation process, by advancing or
delaying the orientation process.

Figure 1 compares the orientation evolution a11(t) for two different values of the diffusion coefficient,
Dr = 0 and Dr = 0.1. It can be noticed that the introduction of diffusion avoids a full alignment, with
an orientation plateau ast11 ≈ 0.85, however, the introduction of diffusion does not alter the orientation
process that at the beginning of the orientation process follow the same evolution.

As the apparent viscosity enhancement depends fundamentally on the component a12 of the
orientation tensor, we compare in figure 2 its evolution in time. It is important to note that an overshoot
in a12 is accompanied of a similar overshoot of the apparent viscosity, measurable using adequate
rheometers. As noticed in Fig. 2 the diffusion tends to reduce slightly the overshoot. In the limit, when
Dr →∞, the isotropic state remains unaltered by the flow and consequently the overshoot disappears. It
can be numerically observed that by increasing the diffusion coefficient Dr the overshoot monotonically
decreases.

3.3. Fractional diffusion versus no-diffusion
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In the present analysis fractional diffusion mechanisms are assumed α 6= 0 (β < 1 and Dr 6= 0) and
compared with the Jeffery’s solution characterized by the absence of diffusion Dr = 0. A simple shear
flow is considered again.

In this case the flow is characterized by ε̇ = 0 and γ̇ = 1. Figure 3 compares the orientation evolution
using the standard orientation model (Dr = 0.05, α = 0) and the fractional one with(Dr = 0.55, α =

0.5). It can be noticed that the introduction of the fractional diffusion delays the orientation process.
Moreover, when focusing on the time evolution of a12(t) it can be observed that the use of fractional
diffusion suppresses the overshoot. Thus, we can conclude that the use of fractional diffusion greatly
affects the orientation process from both the quantitative and qualitative viewpoints.

4. Conclusions

In this paper we investigated the effects of fractional diffusion in nonlinear rheology involving
suspensions composed of rods (short fibers, nano fibers, CNTs). The use of fractional diffusion was
proved being a key element for describing the linear viscoelastic behavior of CNTs suspensions, proving
the existence of large networks created very probably by the electrostatic effects originated by the CNTs
functionalization.

In this paper we explored the impact that such fractional diffusion has when addressing nonlinear
viscoelastic flow regimes. The main findings were that the use of fractional sub-diffusion delays the
orientation process and at the same time suppresses the apparent viscosity overshoot.

This framework is more general and flexible that the one based on standard diffusion. The use
of numerical simulations as the ones considered in [22] should be a valuable route for validating the
different modeling scenarios.
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