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Abstract: Following a suggestion of Warren Weaver, we extend Shannon’s linear model 

of communication piecemeal into a complex systems model. First, we distinguish between 

communication relations and correlations between patterns of relations. The correlations 

span a vector space in which relations are positioned and are thus provided with meaning. 

Second, positions provide perspectives to reflexive receivers. Whereas the different 

meanings can be integrated locally, each such instantiation opens horizons of meaning that 

can be codified along eigenvectors of the communication matrix. The interactions among 

three (or more) codes of communication may generate redundancies (as feedback on the 

forward arrow of entropy production). Increases in redundancy can be measured as a net 

reduction of prevailing uncertainty (measurable in bits). This generation of redundancy 

(options) can be considered as a hallmark of a knowledge-based system (e.g., an 

economy): new knowledge provides more options than can be realized. Both the 

communication-theoretical and the operational (information-theoretical) perspectives are 

further elaborated in the full paper—provisionally entitled “The Self-Organization of 

Meaning and the Reflexive Communication of Information”—which was in the meantime 

submitted (preprint version available at http://arxiv.org/abs/1507.05251).  
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1. Introduction 

In his contribution to Shannon & Weaver’s (1949)1 The Mathematical Theory of Communication, 

Warren Weaver stated (at p. 27) that “[t]he concept of information developed in this theory at first 

seems disappointing and bizarre—disappointing because it has nothing to do with meaning …” 

However, the author added that Shannon’s “analysis has so penetratingly cleared the air that one is 

now, perhaps for the first time, ready for a real theory of meaning.” Claiming such a theory, Luhmann 

([1984] 1995)2 argued that meaning (“Sinn”) self-organizes in terms of communications among human 

beings. From this perspective meaning is generated in interactions among communications as a 

second-order effect on top of the communications among communicators. From this perspective 

meaning is generated in interactions among iterative communications. Hitherto, however, Luhmann’s 

theory has remained far from operationalization and measurement.  

Using Bateson’s (1972, at p. 315)3 alternative definition of information as “a difference which 

makes a difference” (cf. MacKay, 1969),4 Luhmann (1984, pp. 102 ff.; 1995, pp. 67f.) defined 

information as implying a selection: a difference can only make a difference for a system of reference 

that selects this difference from among other possible differences. Others have also defined 

information with reference to a receiving system (e.g., an observer) for whom a difference can make a 

difference. Varela (1979, p. 266)5 argued that the word “information” is derived from the Latin word 

“in-formare” and thus the semantics call for the specification of a system of reference. “Information,” 

however, is then considered a substantive concept that varies with the system of reference instead of a 

formal measure of the uncertainty prevailing in a distribution. Kauffman et al. (2008, at p. 28),6 for 

example, defined information as “natural selection assembling the very constraints on the release of 

energy that then constitutes work and the propagation of organization.” In summary, using Bateson’s 

alternative definition of information, the meaning of “information” becomes dependent on the context.  

Using the same word (“information”) for different concepts has led to considerable confusion. This 

semantic confusion can be avoided by using the words “uncertainty” or “probabilistic entropy” when 

Shannon-type information is meant. In our opinion, the advantage of measuring uncertainty—and 

redundancies, as we shall argue—in bits of information cannot be underestimated, since the 

operationalization and the measurement provide avenues to hypothesis testing and thus control of the 

theorizing (Theil, 1972).7 Whereas Shannon-type information cannot be specified in terms of 

Bateson’s definition, “a difference which makes a difference” can be operationalized and measured in 

terms of (potentially negative) bits of information. 

2. Weaver’s (1949) suggestions 

How can the processing of meaning be conceptualized by elaborating on Shannon’s theory given 

his explicit statement that the “semantic aspects of communication are irrelevant to the engineering 

problem” (Shannon, 1948, at p. 3)? As a first step in the specification of the relevance of Shannon’s 
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engineering model for developing a theory of meaning, Weaver (1949, at p. 26) proposed two “minor 

additions” to Shannon’s well-known diagram (Figure 1), as follows:  

 

“One can imagine, as an addition to the diagram, another box labeled “Semantic Receiver” 

interposed between the engineering receiver (which changes signals to messages) and the 

destination. This semantic receiver subjects the message to a second decoding, the demand on this 

one being that it must match the statistical semantic characteristics of the message to the statistical 

semantic capacities of the totality of receivers, or of that subset of receivers which constitute the 

audience one wishes to affect.  

Similarly one can imagine another box in the diagram which, inserted between the information 

source and the transmitter, would be labeled “semantic noise,” the box previously labeled as simply 

“noise” now being labeled “engineering noise.” From this source is imposed into the signal the 

perturbations or distortions of meaning which are not intended by the source but which inescapably 

affect the destination. And the problem of semantic decoding must take this semantic noise into 

account.”  

 

Figure 1: Weaver’s (1949) “minor” additions penciled into Shannon’s (1948) original 

diagram. 

 
 

Since the “semantic receiver” recodes the information in the messages (received from the 

“engineering receiver” who only changes signals into messages) while having to assume the possibility 

of “semantic noise,” a semantic relationship between the two new boxes can be envisaged. Given 

Shannon’s framework, however, this relation cannot be another information transfer—since semantics 

are defined as external to Shannon’s engineering model. Meanings, however, can be shared without 

observable communications since semantics are based on patterns of relations or, in other words, 

correlations. The correlations span a vector space in a topology different from the network space—a 

SEMANTIC 
NOISE 

SEMANTIC 
RECEIVER 



 4 

 

 

graph—of relations. For example, distances in the vector space are no longer Euclidean, but based on 

the angles (e.g., cosines) between the vectors. 

A system of relations can be considered as a semantic domain. In other words, the sender and 

receiver are related in the graph of Figure 1, while they are correlated in terms of not necessarily 

instantiated relations in the background. The sender and receiver, for example, may share a 

(proto-)language. Note that this “language” is still naturalistic to the extent that one can also consider 

the gestures among monkeys as “languaging” (Maturana, 1978).8 The virtual structure of correlations 

provides a latent background that provides meaning to the information exchanges in relations. The 

correlations add up to a vector space that is a representation different from the network space. In other 

words, meaning is not added to the information generated in relations, but the same information can be 

considered meaningful from a systems perspective. 

Weaver (1949, p. 24) further suggested taking Shannon’s original diagram as a representation of 

“level A” which should be complemented with more levels (B and C) that represent how meaning is 

conveyed at level B, and how and why the received meaning can affect behavior (at level C)? In our 

opinion, meaning can only be conducive for behavior if it is codified and operates at the level of the 

social medium (that is, inter-personally); for example, as legislation. Thus, we have to look more 

carefully into the development and functions of codes in inter-human communication. 

 

Figure 2: Levels B and C added to the Shannon diagram (in red-brown and dark-blue, 

respectively). 

 
Figure 2 provides the scheme that we propose for levels B and C. We specified above that the 

semantic and potentially linguistic relation between the semantic receiver and semantic noise is based 
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on correlations among sets of relations at level A. In the vector space (level B), meanings can be 

shared, but cannot communicated because communication operates at level A. The use of language 

facilitates, supports, and potentially reinforces the options for sharing meaning. Unlike the primitive 

forms of language discussed above, human language enables us to explicate the meaning of the 

communication in messages. 

Natural languages can be considered as the as yet undifferentiated and therefore common medium 

of communication. In other words, codes of communication are used at the symbolic level for 

regulating the use of language. The codes enable us to short cut the communication; for example, by 

paying the market price of a good instead of negotiating it using language. In our opinion, the codes of 

communication are thus candidates for Weaver’s level C: the codes and their combinations also enable 

us to make the communications far more precise and efficient than is possible in natural languages.  

The codes operate as expectations entertained reflexively in the communications among human 

beings. They open horizons of meaning that offer options. Options add to the redundancy as the 

complement of the information; adding options thus changes the maximum entropy—that is, the 

definition—of the system. How does this work? 

3. The development of redundancies 

The redundancy R is defined in information theory as the fraction of the capacity of a 

communication channel that is not used. In formula format:  

max

max

max

1

H

HH

H

H
R

−
=

−=

 

(1) 

Brooks & Wiley (1986)9 noted that in the case of an evolving system, the number of options N may 

increase, and therefore both the H of the system under study and the maximum entropy (Hmax) can 

increase (Hmax = log(N). In Figure 3a, we added green to the redundancy as part of the entropy: these 

are the options that were not realized by the system, but could have been realized. Kauffman (2000), 

for example, calls these possible realizations “adjacent,” but his argument remained in the biological 

domain. Above this area, however, Brooks & Wiley (1986, at p. 43) added the label “impossible” as a 

legend (Figure 3a). 
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Figure 3. (a) The development of entropy (Hobs), maximum entropy (Hmax), and 

redundancy (Hmax – Hobs). Source: Brooks & Wiley (1986, at p. 43). (b) Hitherto 

impossible options are made possible because of cultural and technological evolution. 

(a) (b) 

 

In Figure 3b, we have added the label “technologically made feasible” to this latter area in order to 

indicate how the generation of new options (and hence redundancy) can be enhanced by cultural 

evolution which includes the levels B and C. An intentional system operates by adding redundancy 

without necessarily adding information (as we argued above). The simultaneous addition of 

information is likely—because of the coupling to relations—but this newly added uncertainty is not a 

condition for the generation of redundancy. Symbolic generalization of the codes regulates the 

generation of redundancies from above, whereas Shannon entropy is continuously generated in the 

historical process from below. 

New options can be generated as mutual redundancy when two (or more) codes of communication 

are instantiated, as in the case of introducing a new technology in a market or when writing an 

evidence-based report for a government agency. In this case, one needs text that can be read using the 

various perspectives involved, and thus one generates redundancies deliberately (Fujigaki & 

Leydesdorff, 2000).10 The redundancy (the green surfaces of Figure 3b) is generated by the 

recombination of redundancy flows. Redundancy flows are structured by codes in the communication. 

4. The measurement of redundancy in two or more dimensions 

We propose to specify mutual redundancy between systems in analogy to the concept of mutual 

information as specified in Shannon’s theory, but using whole sets. Recall that mutual information 

between two random variables is formulated as follows:  

122112 HHHT −+=  (2) 
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In addition to mutual information, the overlap can be considered as containing redundancy as a 

surplus of information. We can thus define an “excess” information value Υ12 —equivalent to H12 but 

with the plus sign, since we do not correct for the duplication in the case of redundancies—as follows: 

ଵܻଶ = ଵܪ  ଶܪ  ଵܶଶ = ଵଶܪ  2 ଵܶଶ (3) 

The mutual redundancy R12 can now be found by using Y12 instead of H12 in Eq. 2, as follows:  ܴଵଶ = ଵܪ  ଶܪ − =								 ଵଶߓ ଵܪ  ଶܪ − ଵଶܪ)  2 ଵܶଶ) =	ܪଵ  ଶܪ − (ሾܪଵ 	ܪଶ − ଵܶଶሿ  2 ଵܶଶ) = − ଵܶଶ 

(4) 

Since T12 is necessarily positive (Theil, 1972: 59 ff.), it follows from Eq. 4 that R12 is negative and 

therefore cannot be anything other than the consequence of an increased redundancy. This reduction of 

the uncertainty is measured in bits of information, but the sign is negative. Therefore, this is not a 

Shannon-type information, since the latter information is necessarily positive (Krippendorff, 2009).11  

For the three-dimensional case, one can define, in addition to the two-dimensional values of Υ (in 

Eq. 3), a three-dimensional value including the redundancy as follows: ߓଵଶଷ = ଵܪ  ଶܪ  ଷܪ  ଵܶଶ  ଵܶଷ  ଶܶଷ  ଵܶଶଷ (5) 

Furthermore, the mutual information in three dimensions can be derived (e.g., McGill, 1954;12 

Yeung, 2008)13 as:  

ଵܶଶଷ = ଵܪ  ଶܪ  ଷܪ − ଵଶܪ − ଵଷܪ − ଶଷܪ  ଵଶଷܪ ଵଶଷܪ = ଵܪ  ଶܪ  ଷܪ − ଵܶଶ − ଵܶଷ − ଶܶଷ  ଵܶଶଷ  
(6) 

It follows that the difference between Eqs. 5 and 6 (after subtraction) is:  ߓଵଶଷ ଵଶଷܪ	− = 2 ଵܶଶ  2 ଵܶଷ  2 ଶܶଷ ߓଵଶଷ = ଵଶଷܪ  2 ଵܶଶ  2 ଵܶଷ  2 ଶܶଷ 
(7) 

Using Υ-values instead of H-values for the joint entropies in Eq. 6, one obtains the mutual 

redundancy as follows:  ܴଵଶଷ = ଵܪ  ଶܪ  ଷܪ − ଵଶܪ)  2 ଵܶଶ) − ଵଷܪ)  2 ଵܶଷ) − ଶଷܪ)  2 ଶܶଷ) 	(ܪଵଶଷ  2 ଵܶଶ  2 ଵܶଷ  2 ଶܶଷ) = ଵܶଶଷ 

(8) 

In the three-dimensional case, the mutual redundancy is thus identical to the mutual information in 

three dimensions. Leydesdorff & Ivanova (2014, at p. 392)14 show that in the case of four dimensions 

R1234 = – T1234. The sign of the mutual redundancy alternates with the number of dimensions. This 

corrects for the otherwise inexplicable sign changes in the mutual information with increasing 

dimensionality. In other words, mutual redundancy in three or more dimensions is consistent, while 

mutual information itself is not, because of the sign changes with the dimensionality.15  

In general, Eq. 6 can also be written as follows:  

T123 = [T12 + T13 + T23] + [H123 - H1 - H2 - H3] (10) 
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since one can rewrite, as follows: 

T123 = [(H1 + H2 - H12) + (H1 + H3 - H13) + (H2 + H3 – H23)] + [H123 - H1 - H2 - H3] 

T123 = H1 + H2 + H3 - H12 - H13 - H23 + H123 
(6) 

Due to the subadditivity property [ݔ)ܪଵ, … , (ݔ 	 ∑ ଵݔ)ܪ )], which holds for any dimension n≥ 2, 

the second bracket in Eq. 10 makes a negative contribution, whereas the terms in the first bracket of 

Eq. 10 are strictly positive.  

It follows (inductively) that for any given dimension n, one can formulate combinations of mutual 

informations corresponding to ∑ ଵݔ)ܪ ) − ,ଵݔ)ܪ … ,  ) that are by definition positive (or zero in theݔ

null case of complete independence). For example (up to four dimensions) as follows: 

 0  ୀଶୀଵݔ)ܪ ) − ,ଵݔ)ܪ (ଶݔ = ଵܶଶ 0  ୀଷୀଵݔ)ܪ ) − ,ଵݔ)ܪ ,ଶݔ (ଷݔ = 	 ܶଷ − ଵܶଶଷ 0  ୀସୀଵݔ)ܪ ) − ,ଵݔ)ܪ ,ଶݔ ,ଷݔ (ସݔ = ܶ −  ܶସ 	 ଵܶଶଷସ 

(11) 

where the sums on the right-hand side are over the ൫൯ permutations of the indices. This relation can be 

extended for general n as 0  ୀଵݔ)ܪ ) − ,ଵݔ)ܪ … , (ݔ  

= ܶ൫మ൯ −	 ܶ൫య൯ 	 ܶ − ⋯ (−1)1݊	൫ర൯  ܶ…(ିଵ)൫ షభ൯…(ିଵ) (−1)݊	 ܶ…()൫൯…()  

(12) 

where the last term on the right-hand side is equal to (−1)݊	 ଵܶଶଷସ.... Returning to the relation between ܴଵଶ and ଵܶଶ, it now follows instructively that:  ܴଵଶ = − ଵܶଶ = ,ଵݔ)ܪ (ଶݔ − ଶଵݔ)ܪ )  0  
(11) 

and the analogous relations for ܴଵଶଷ and ܴଵଶଷସ follow in the same way from Eq. (12). More generally, 

in the case of more than two dimension, n > 2: ܴ = (−1)1݊	 ଵܶଶଷସ… = ሾݔ)ܪଵ, … , (ݔ − ଵݔ)ܪ )ሿ 
ሾ ܶ൫మ൯ −	 ܶ൫య൯ 	 ܶ − ⋯ (−1)1݊	൫ర൯  ܶ...(ିଵ)൫ షభ൯…(ିଵ) ሿ 

(13) 

The first bracketed term of Eq. 13 is necessarily negative entropy, while the configuration of the 

remaining mutual information relations contribute a second term which is comprised of mutual 

informations derived from the lower dimensional configurations. In other words, we model here the 

generation of redundancy on the one side versus the historical process of relating on the other, as an 
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empirical balance. When the resulting R is negative, (evolutionary) self-organization prevails over 

organization (at specific moments of time) in the configuration under study, whereas a positive R 

indicates conversely a predominance of organization over self-organization as two different 

subdynamics. 

Note that the resulting configuration of relations—as expressed in the right-hand term of Eq. 13—

no longer refers to level A of the Shannon model because this formulation implies a systems view, 

whereas the Shannon model focuses on local relations. (As noted, a negative value of R12 cannot be 

appreciated in the Shannon model.) In other words, the right-side term of Eq. 13 is composed of both 

interactional and correlational information, and the resulting sign and value of R thus include also the 

feed-forward and feedback loops between levels A and B. The one sign of R can also be associated 

with clockwise and the other with anti-clockwise rotation of the resulting vectors, whereas the values 

of the two terms in Eq. 13 measure the relative weights of the two rotations. 

5. Summary and conclusions 

We have extended Shannon’s model of communication (at level A) with two levels (B and C) that 

change the linear model into an evolutionary one because feedback and feed-forward loops are 

possible among the levels. At level A, information is transmitted; at level B, information is organized 

and thus made meaningful in a vector-space. Reflexivity reveals that this vector space is constructed 

and therefore a potential subject of reconstruction: the possibility of reconstruction opens horizons of 

meaning (level C). Whereas the common language at level B tends to integration (into organization), 

the eigenvectors can be expected to span a vector space in different directions. In other words, this 

layer generates horizontal differentiation among the codes of communication as a top-down pressure.  

Codes of communication are no longer actor-attributes, but operate on the communications among 

the communicators once the codes emerged in a self-organizing mode, that is, insofar as constraints on 

the communication are removed. The system itself has to find these resonances by varying historically. 

The generation of redundancy can enter the historical instantiations and under the condition of self-

reinforcing loops tip the balance towards the prevalence of evolutionary self-organization over 

historical organization. We have shown how this trade-off can be followed by the measurement of 

mutual redundancy. 

We argue that redundancy is a more crucial subject of study in a knowledge-based economy than 

information. For example, the number of options available to an innovation system for realization may 

be more decisive for its survival as the historically already-realized innovations (Petersen et al., in 

preparation).16 However, redundancies are not generated on the side of the variation, but by the 

selection mechanisms operating upon one another. When three or more selection mechanisms operate, 

auto-catalysis is an option, and options can then be generated at an increasing pace. Thus, horizontal 

differentiation is a necessary component of self-organization in the vertical dimension. The warp and 

woof of meaning generation and self-organization are not harmoniously integrated as in textiles, but 

differentiated and disturbing one another since operating at the same time. These dynamics lead to a 

fractal manifold in different directions. Through breakage new options are generated (Ivanova & 

Leydesdorff, 2015;17 Freeeman and Perez, 1988).18 
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