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Abstract: Rolling-element bearings are among the most common components of rotating 

machinery available in various industries. Mechanical wear and defective bearings can cause 

machinery to decrease its reliability and efficiency. Therefore it is very important to detect 

their faults in an early stage in order to assure a safe and efficient operation. We present a 

new technique for an early fault detection and diagnosis in rolling-element bearings based 

on vibration signal analysis. After normalization and the wavelet decomposition of vibration 

signals, the logarithmic energy entropy of obtained wavelet coefficients, as a measure of the 

degree of order/disorder, is extracted in a few sub-bands of interest. Then the feature space 

dimension is optimally reduced to two using scatter matrices. In the reduced two-

dimensional feature space the fault detection and diagnosis is carried out by quadratic 

classifiers. Accuracy of the new technique was tested on four classes of the recorded 

vibrations signals, i.e. normal, with the fault of inner race, outer race and balls operation. An 

overall accuracy of 100% was achieved. The new technique can be used to increase 

productivity and efficiency in industry by preventing unexpected faulty operation of 

bearings.  

Keywords: Fault diagnosis; rolling bearings; wavelet transform; logarithmic energy 

entropy; quadratic classifiers 
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1. Introduction 

Predictive maintenance together with an early fault detection and diagnosis (FDD) plays an 

increasingly important role in order to achieve the efficient and sustainable operation of rotating 

machinery already installed and running at the present time. The typical lifetime of such machinery is 

between 30 and 50 years. Rolling-element bearings are among the most common components of rotating 

machinery available in various industries from agriculture to aerospace. They operate under high loading 

and severe conditions. As shown in Figure 1 their faults often occur gradually and represent one of the 

foremost causes of failures in rotating machinery. Defective bearings generate various forces causing 

high amplitude of vibration and thus decreasing efficiency. For example, in the case of a water pumping 

station bearing faults can increase vibration level up to 85%, while efficiency decreases 18% [1]. 

Therefore it is very important to avoid deteriorating condition, degraded efficiency and unexpected 

failures using a reliable, fast and automated technique for early FDD in bearings.  

  

Figure 1. Predictive maintenance Potential to Functional Failure (P-F) curve 

Many techniques for FDD in bearings based on vibration signal analysis have emerged in recent 

years. Generally, an FDD can be decomposed into three steps: data acquisition, feature extraction, and 

classification. An effective feature extraction as the key step represents a mapping of vibration signals 

from their original measured space to the feature space which contains more valuable information for 

FDD. Even though time-domain features such as peak, mean, root mean square, variance, skewness and 

kurtosis have also been employed as input features to train a bearing FDD classifier the fast Fourier 

transform (FFT) is one of the most widely used and well-established feature extraction methods [2]. 

However, the FFT-based techniques are not suitable for analysis of non-stationary signals. Since 

vibration signals often contain non-stationary components, for a successful FDD it is very important to 

reveal such information as well. Thus, a supplementary technique for non-stationary signal analysis is 

necessary. Time-frequency techniques such as the Wigner–Ville distribution (WVD) [3] and the short-

time Fourier transform (STFT) [4] also have their own disadvantages. The WVD bilinear characteristic 

leads to interference terms in the time-frequency domain while the STFT results in a constant resolution 

for all frequencies since it uses the same window for the analysis of the entire signal. The wavelet 

transform very accurately resolves all these deficiencies and provides good frequency resolution and 

low time resolution for low-frequency components as well as low frequency resolution and good time 

resolution for high-frequency components. Therefore the wavelet transform has been widely applied in 

the field of vibration signal analysis and feature extraction for bearing FDD [5,6]. A precise classification 

as the next step directly depends on previously extracted features, i.e. there is no a classifier which can 
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make up for the information lost during the feature extraction. As in the case of the feature extraction, 

we can come across a wide range of classifiers used for FDD in bearings. The classifiers based on 

artificial neural networks [7–9] and fuzzy logic [10,11] demonstrated a highly reliable classification. 

However, one of the disadvantages of these classification approaches is that they require the availability 

of a very large training set and a large number of parameters, which have to be selected or adjusted to 

obtain good results [12]. Therefore, there is a strong need to make the classification process simpler, 

faster and accurate using the minimum number of features and parameters. 

In this paper a new technique for early FDD is proposed. As shown in Figure 2 it has several steps. 

The first step is acquisition of vibration signals as well as their preprocessing which includes 

normalization and segmentation. In the next step and after the wavelet transform of vibration signals 6 

representative features, i.e. the logarithmic energy entropy of the wavelet coefficients in six sub-bands, 

are extracted in the time-frequency domain. In the third step the feature space dimension is optimally 

reduced to two using scatter matrices while in the final step in total three quadratic classifiers are 

designed [13], the one for detection and the other two for diagnosis of bearing faults. Using this new 

approach, the overall complexity of FDD is decreased and at the same time a very high accuracy 

maintained compared with already available techniques which employ more complex training 

algorithms.  

 

Figure 2. Flowchart of the new technique for early FDD 
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2. Materials and methods 

2.1. Acquisition and preprocessing of the vibration signals 

In order to test the capability of the new technique the bearing data obtained from the Case Western 

Reserve University (CWRU) Bearing Data Center [10] is used since it has become a standard reference 

in the field of FDD in bearings. A ball bearing as one shown in Figure 3 was installed in a motor driven 

mechanical system shown in Figure 4. A three-phase induction motor was connected to a dynamometer 

and a torque sensor by a self-aligning coupling. The dynamometer was controlled so that desired torque 

load levels can be achieved. An accelerometer with a bandwidth up to 5000 Hz and a 1 V/g output was 

mounted on the motor housing to acquire the vibration signals from the bearing.  

 

Figure 3. Ball bearing 

 

Figure 4. Experimental system 

The data collection system consisted of a high bandwidth amplifier particularly designed for vibration 

signals and a data recorder with a sampling frequency of 12000 Hz. The sampling rate is ample having 

in mind that the frequency content of interest in the recorded vibration signals did not exceed 5000 Hz. 

The data recorder was equipped with low-pass filters at the input stage for anti-aliasing. In total four sets 

of data were obtained from the experimental system: (i) under normal conditions; (ii) with inner race 

faults; (iii) with ball faults and (iv) with outer race faults. The faults ranging from 0.007 inches to 0.40 

inches in diameter and 0.011 inches in depth were introduced separately at the bearing elements using 

the electrical discharge machining (EDM) method. The ball bearing was tested under four different loads 

(0, 1, 2 and 3 hp) while the shaft rotating speeds were 1730, 1750, 1772 and 1797 rpm. Only the smallest 

fault diameter was selected for this study since we were interested in an early FDD. In order to make the 
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entire technique more robust and less dependent on the vibration signal magnitude the recorded vibration 

signals were normalized to zero mean and unit variance. The vibration signals collected from each of 

four different conditions are divided into 256 segments of 1024 sample each, as shown in Figure 5. In 

total 1024 segments were used, 512 for design and 512 for testing of the new technique for early FDD 

in bearings.  

 

Figure 5. Segments of the vibration signals collected from four different conditions of the 

ball bearing 

2.2. Wavelet decomposition and logarithmic energy entropy 

We are already familiar with the fact that a signal can be presented as a linear combination of its basic 

functions. A unit impulse function whose power is limited and whose mean differs from zero is the basic 

function of the signal in the time domain, whereas in the frequency domain, this role is assigned to the 

sinusoidal function that has infinite power, and a zero mean. When using the wavelet transform to 

transform the signal from the time domain to the time-frequency domain, the basic function is the 

wavelet. The wavelet is a function of limited power, i.e. duration, and a zero mean [14], and for which 

the following is valid  |߰[݊]|ଶ < ∞ஶ
ୀିஶ ,  ߰[݊] = 0ஶ

ୀିஶ . (1) 
The wavelet that is moved, or translated, in time for ܾ samples and scaled by the so-called dilation 

parameter ܽ is given by ߰[݊] = 1√ܽ߰ ݊ − ܾܽ ൨ . (2) 
By changing the dilation parameter, the basic wavelet (ܽ = 1) changes its width, and thus spreads (ܽ >1) or contracts (0 ≤ ܽ < 1) in the time domain as shown in Figure 5. In the analysis of non-stationary 
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signals, the possibility of changing the width of the wavelet represents a significant advantage, 

considering the fact that wider wavelets can be used to extract slower changes, i.e. low frequency 

components, and narrower wavelets can be used to extract faster changes, i.e. high frequency 

components. Following the selection of the values of parameters ܽ and ܾ it is possible to transform 

segments of the signal ݔ[݇] of ܰ samples, and calculate the wavelet transform coefficients in the 

following way ݓ[݊] =ݔ[߬]߰[݊ − ߬]ே
ఛୀଵ , 1 ≤ ݊ ≤ ܰ	(3) 

What is actually being extracted from the signal are only those frequencies that are within the wavelet 

frequency band ߰[݊] i.e. the signals are filtrated by the wavelet ߰[݊].	Based on the coefficients 

obtained in this way, the original signal can also be reconstructed in the time domain using an inverse 

wavelet transform. Of course, if necessary, it is possible to also independently reconstruct the part of the 

signal which is filtered, as well as the part that was rejected by the wavelet ߰[݊]	on the basis of the 

so-called detail and approximation coefficients respectively, which are of course a function of the 

transformation coefficients ߰[݊]. 

 

Figure 6. Sinusoid and two wavelets with different width 

Parameters ܽ  and ܾ can continuously change, which is not so practical especially bearing in mind that 

the signal can be completely and accurately transformed and reconstructed by using a smaller and finite 

number of wavelets, that is, by using a limited number of discrete values of parameters ܽ and ܾ, which 

is also known as the discrete wavelet transform (DWT). In this case, parameters ܽ and ܾ are the powers 

of 2, which gives us the dyadic orthogonal wavelet network with frequency bands which do not overlap 

each other. The dilation parameter a, as the power of 2, at each subsequent higher level of transformation, 

doubles in value in comparison to the value from the previous level, which means that the wavelet 

becomes twice as wide in the time domain, and has a frequency band that is half as narrow and twice as 

low. This actually decreases the resolution of the transformed signal in the time domain twofold, 

increasing it twice as much in the frequency domain. Thus, the signal frequency band from the previous 

level is split into two halves at every next level, into a higher band which contains higher frequencies 

and describes the finer changes, or details, and a lower band that contains lower frequencies and 

represents an approximation of the signal from the previous level. This technique is also known as the 

wavelet decomposition. 

Entropy-based wavelet decomposition presented by Coifman and Wickerhauser [15] is used to 

compute logarithmic energy entropy. Essentially, entropy tells us how much information is carried by a 

signal, i.e. how much randomness is in the signal. The logarithmic energy entropy of the wavelet 
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coefficients ݓ[݊], 1 ≤ ݊ ≤ ܰ, as a finite length random discrete variable, with probability distribution 

function (ݓ) is defined by  (ݓ)ܪ = −ቀ݈݃ଶ൫(ݓ)൯ቁଶே
ୀଵ 	(4) 

where i indicates one of the discrete states. This entropy is smaller if each discrete state has about the 

same probability of occurrence. 

2.3. Reduction of the feature space dimension 

Let an ݊-dimensional vector ܺ = xଶ	ଵݔ] 	⋯	x]் be transformed through the application of a certain 

linear transformation into an ݊-dimensional vector ܻ = yଶ	ଵݕ] 	⋯	y]் = -is an n ܣ where ்ܺܣ

dimensional transformation matrix. Mapping of the vector ܺ into the space made up by the eigenvectors Φଵ,Φଶ, … ,Φ of its covariance matrix Σ is known as the principal component analysis (PCA) [13]. 

When reducing the feature space dimension using the PCA [16] the performance of each feature ݔଵ, xଶ, … , x is characterized by its eigenvalue ߣଵ, ,ଶߣ … ,  , respectively. Thus, by rejecting features weߣ

should first reject those with the smallest eigenvalue, i.e. with the smallest variance in the new feature 

space. For example, in the case of the dimension reduction from two to one shown in Figure 7 the mapped 

feature ݕଶ would be rejected as less informative even though it has better discriminatory potential than ݕଵ.  

 

Figure 7. Different approaches to reduction of the feature space dimension 

Unlike the PCA, the dimension reduction based on scatter matrices [13] is of special significance in 

this paper since it takes into consideration the very purpose of the dimension reduction, that is, the 

classification. Let ܮ be the number of classes which should be classified and ܯ and Σ, ݅ =  the ܮ⋯1

mean vectors and the covariance matrices of these classes, respectively. Then the within-class scatter 

matrix can be defined by:  ܵௐ = ܲ
ୀଵ ܺ)ሼܧ ܺ)(ܯ− )்/߱ሽܯ− = ܲ

ୀଵ Σ	(5) 
and the between-class scatter matrix as: 
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 ܵ = ܲ
ୀଵ ܯ) − ܯ)(ܯ −  (6)	)்ܯ

where ܯ is the joint vector of mathematical expectation for all the classes together, that is  ܯ = ሼܺሽܧ = ܲ
ୀଵ .ܯ (7) 

In addition the mixed scatter matrix can be defined by: ܵெ = ܺ)ሼܧ ܺ)(ܯ− )்ሽܯ− = ܵௐ + ܵ. (8) 
Then the problem of dimension reduction is reduced to the identification of the ݊ ×݉ transformation 

matrix ܣ which maps the random vector ܺ  of dimension ݊  onto the random vector ܻ = ܬ of dimension ݉ and at the same time maximizes the criteria ்ܺܣ =  This criteria is invariant to non-singular .(ௐିଵܵܵ)ݎݐ

linear transformations and results into transformation matrix that takes the following form: ܣ = [Ψଵ	Ψଶ 	⋯	Ψ]	(9) 
where Ψ, ݅ = 1,… ,݉ are the eigenvectors of the matrix ܵௐିଵܵ which correspond to its ݉ greatest 

eigenvalues. The dimension reduction based on scatter matrices applied to the case shown in Figure 7 

would result into selection of the mapped feature ݕଶ. Obviously it is much better choice than ݕଵ selected 

by the PCA in terms of more accurate classification as the main goal of the dimension reduction. 

2.4. Design of quadratic classifiers  

Quadratic classifiers are already known to be very good and robust solutions to the problems of 

classification of vectors whose statistical features are either unknown or change over time [13]. In 

addition they also allow visual insight into the classification results. A quadratic classifier to be designed 

in the two-dimensional feature subspace ܻ = (ܻ)can be defined by the following equation: ℎ ்[ଶݕ	ଵݕ] = ்ܻܻܳ + ்ܸܻ + ߥ = [ଶݕ	ଵݕ] ቂݍଵଵ ଶଵݍଵଶݍ ଶଶቃݍ ቂݕଵݕଶቃ + [ଶߥ	ଵߥ] ቂݕଵݕଶቃ + .ߥ (10) 
The matrix ܳ, vector ܸ and scalar ߥ are the unknowns to be optimally determined. The quadratic 

equation (10) can be represented in a linear form as: 

ℎ(ܻ) = [ଶߥ	ଵߥ	ଶଶݍ	ଵଶݍ	ଵଵݍ] ێێۏ
	ۍێ ଶݕଵݕଶଶݕଶݕଵݕଵଶ2ݕ ۑۑے

ېۑ + ߥ = ௭்ܸ ܼ + .ߥ (11)  
In order to achieve the largest possible between-class and shortest within-class scattering we have 

selected the following function as the optimization criterion [13]: ݂ = ଵܲߟଵଶ + ଶܲߟଶଶଵܲߪଵଶ + ଶܲߪଶଶ 	(12) 
where ଵܲ and ଶܲ are probabilities and ߟ = ሼℎ(ܼ)/߱ሽܧ = ሼܧ ௭்ܸ ܼ + /߱ሽߥ = ௭்ܸ ܯ + ଶߪ (13)	ߥ = ሼℎ(ܼ)/߱ሽݎܽݒ = ሼݎܽݒ ௭்ܸ ܼ + /߱ሽߥ = ௭்ܸ Σ ௭ܸ. (14) 
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 are the mean vectors and covariance matrices, respectively, of the vector ܼ for each of the two	 and Σܯ 

classes ݈  to be classified. After optimization of the function ݂ , the optimal vector ܸ ௭, and thus the optimal 

matrix ܳ and vector ܸ, gets the following form 

௭ܸ = ێێێۏ
ଶߥଵߥଶଶݍଵଶݍଵଵݍ	ۍ ۑۑے

ېۑ = [ ଵܲΣଵ + ଶܲΣଶ]ିଵ(ܯଶ  (15)	ଵ)ܯ−
while the optimal scalar is ߥ = − ௭்ܸ ( ଵܲܯଵ + ଶܲܯଶ)	(16) 
which finishes the design of the quadratic classifier. 

3. Results and discussion 

In order to extract representative features and before the application of the wavelet transform it is 

necessary to choose the type of the basic wavelet as well as the number of resolution levels into which 

the vibration signal segments will be decomposed. After analysis of several types of the basic wavelets, 

the fourth-order Daubechies wavelet was selected since it demonstrated better discriminatory potential 

and also has good localizing properties both in the time domain and the frequency domain [14]. The 

five-level wavelet decomposition of the vibration signals recorded with a sampling frequency of 12000 

Hz resulted into the following six frequency sub-bands ܣହ 0-187.5 Hz, ܦହ 187.5-375 Hz, ܦସ 375-750 

Hz, ܦଷ 750-1500 Hz, ܦଶ 1500-3000 Hz and ܦଵ 3000-6000 Hz.  

Following the wavelet decomposition, the logarithmic energy entropy of the obtained wavelet 

coefficients in each sub-band were extracted as representative features in the time-frequency domain. 

The entropy is a measure of the degree of order/disorder of the signal. So it can provide useful 

information about the underlying dynamical process associated with the signal. For example, a very 

ordered process can be a signal with a narrow band spectrum. Its energy will be almost zero except for 

the sub-band that includes the representative signal frequency while the entropy will be near zero. A 

signal generated by a random process will represent a disordered behaviour and will have significant 

contribution from all frequency sub-bands. Consequently its energy will be almost equal for all sub-

bands while the entropy will take maximum value.  

In total 6 features were extracted for each of 1024 analyzed segments. Now each original segment 

recorded in the time domain is represented by its feature vector ܺ = ଶݔଵݔ]  ]், and thus a point inݔ⋯

the feature space with a dimension of 6. The extracted features together with their mean values and 

standard deviations for all four different classes of interest are presented in Table 1. Obviously in 

presence of a bearing fault there is a shift in energy in the vibration signals from lower to higher sub-

bands while at the same time the disorder in the vibration signals in lower sub-bands decreases and 

higher sub-bands increases. In Table 1 and Figure 8, it can also be noticed that most of the extracted 

features have a certain potential for the fault detection but not for the fault diagnosis. 
  



 10 

 
Тable 1. Mean and standard deviation of the features extracted from different sub-bands 

In
d

ex 

Feature 
Sub-

band 

Normal Ball fault 
Inner race 

fault 

Outer race 

fault 

ହ 20.62ܣ  ଵ Log. En. Entropyݔ ߪ  ߤ  ߪ  ߤ  ߪ  ߤ  ߪ  ߤ  16.63 -99.70 17.29 -124.2 16.97 -182.5 ହ -9.674ܦ ଶ Log. En. Entropyݔ14.96 13.20 -86.74 14.37 -113.6 13.63 -157.5 ସ -50.41ܦ ଷ Log. En. Entropyݔ14.94 17.60 -146.2 22.97 -119.6 13.85 -256.7 ଷ -2.009ܦ ସ Log. En. Entropyݔ21.39 39.46 -337.6 50.89 -221.0 26.74 -560.4 ଶ -423.9ܦ ହ Log. En. Entropyݔ58.71 37.51 -210.8 33.56 -323.7 33.03 -504.2 ଵ -2145ܦ  Log. En. Entropyݔ46.38 148.5 -597.1 61.37 -981.6 54.50 -1211 57.77

 

 

Figure 8. Entropy of the wavelet coefficients in the sub-band ܦହ, normal (green), ball fault 

(red), inner race fault (blue) and outer race fault (magenta)  

Since none of the extracted features is sufficiently reliable for FDD it is necessary to find their optimal 

combination in order to achieve a better separability between different classes of bearing condition. That 

is usually done by a mapping of the existing feature space into a new one whose dimension can be 

reduced without any significant loss of information that makes the classification process much simpler. 

Although the PCA is one of the most widely used techniques for reduction of the feature space dimension 

[16] in this paper we apply the technique based on scatter matrices [13] since it is more suitable for 

classification problems as described in Section 2.3. At first, we reduce the feature space dimension to 

enable the fault detection and then repeat the same procedure in order to diagnose the detected fault as 

shown in Figures 9 and 10. Obviously in this way separabilty between different classes is increased 

compared with Figure 8. After the dimension reduction we designed suitable quadratic classifiers 

following the procedure described in Section 2.4, that is also the last step in design of the new technique 

for early FDD. The first quadratic classifiers shown in Figure 9 separates normal from faulty condition, 
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i.e. performs the fault detection, while the other two quadratic classifiers shown in Figure 10 are able to 

separate all three different bearing faults from each other, and thus perform the fault diagnosis.  

 

Figure 9. Dimension reduction and classification for the fault detection, normal (green) and 

faulty (red, blue and magenta) segments of the design set 

 

Figure 10. Dimension reduction and classification for the fault diagnosis, segments of the 

design set with ball fault (red), inner race fault (blue) and outer race fault (magenta) 

Unlike in the previous two figures where the design set of 512 segments is shown, Figures 11 and 12 

show the remaining set of 512 segments used to test the performance of the designed classifiers and thus 

the new technique for early FDD as well. Statistical performances such as sensitivity, specificity and 

accuracy of the new technique are estimated based on the classification results. The sensitivity is defined 

as a ratio between the number of correctly classified segments and the total number of the segments for 

each of classes individually. The specificity is also calculated for each of classes individually and it 
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represents the ratio between the number of correctly classified segments of the other classes and the total 

number of the segments in them. The accuracy is calculated as the ratio between the total number of 

correctly classified segments and the total number of segments in all classes together. As it can be noticed 

in Figures 11 and 12 all these three statistical performances of the new technique for early FDD in 

bearings are equal to 100%. 

 

Figure 11. Dimension reduction and classification for the fault detection, normal (green) 

and faulty (red, blue and magenta) segments of the testing set 

 

Figure 12. Dimension reduction and classification for the fault diagnosis, segments of the 

testing set with ball fault (red), inner race fault (blue) and outer race fault (magenta)  

Having in mind the results of other techniques available in the literature and tested on the same 

vibrations signals, e.g. 41 papers published in Mechanical Systems and Signal Processing between 2004 

and early 2015 [17], the new technique demonstrated a very good performance which is either better or 

comparable with other available techniques which usually deploy much more complex algorithms. In 

addition, in this work only the segments with the smallest fault diameter were used because we were 



 13 

 
interested in incipient FDD. It should also be emphasized that the vibration signals were normalized 

before the feature extraction. In that way we managed to overcome one of main disadvantages of other 

techniques in terms of application in a real production environment since most of them also rely on the 

amplitude of the vibration signals as one of the key discriminatory features. However, the amplitude has 

been found as unreliable in real applications since it varies even with healthy bearings, e.g. depending 

on their load. 

4. Conclusion 

In order to further increase productivity and energy efficiency of rotating machinery it is necessary 

to deploy an advanced techniques for an early FDD. In this paper we described such a technique to be 

used in rotating-element bearings as the most common components of rotating machinery. The new 

technique based on the logarithmic energy entropy and statistical pattern recognition demonstrated a 

very high accuracy that is either better or comparable with other available techniques which in most 

cases require a very large training set and a large number of parameters to be selected and adjusted to 

obtain good results. A special attention has been paid to robustness of the new technique not only during 

the feature extraction and the reduction of the feature space dimension but also during the classification 

process that resulted in the choice of quadratic classifiers known for both their simplicity and a high 

level of robustness in the applications of this type. Quadratic classifiers have also one more important 

advantage that is possibility of visualization of the classification results in two-dimensional space. As 

part of our future work we plan to test the new technique in a real production environment.  
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