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Introduction 

•  Skeletal muscle force and surface electromyographic (sEMG) signals have an 
inherent relationship. 

•  This research focuses primarily on modeling muscle dynamics in terms of 
sEMG signals and the generated muscle force. 

•  Here we assume sEMG as input and force as output to the skeletal muscle 
system. 

•  We model the two using a nonlinear Hammerstein-Wiener model and 
Multiple Regression model. 

•  We propose an entropy based threshold approach, which is more robust and 
reliable in most of the practical and real-time scenarios. 

•  The proposed methods are tested with the data collected on different subjects. 
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•  The number of people living with limb loss in USA are approximately 1.7 million,  [1], [2]. 

•  There is one in every 200 people has had an amputation, [1], [2]. 

•  Reason for this number are: war injury, cancer and trauma, and due to complications of the vascular system 
(majority), [3], [4]. 

•  A prosthetic limb can improve the quality of everyday life of an amputee by increasing the functionality. 

•  The central nervous system activates and control the flow of specific ions such as sodium (Na++), potassium (K++), 
and calcium (Ca++) across the cell membranes, which generate EMG signal (-5 and +5 mV). 

•  As sEMG is easily available, it is a natural choice to use as a control signal for the prosthesis, [5]-[13]. 

•  To improve the quality of life of the people with upper-extremity we need good prosthetic hand. 

•  This research focus on the better and cost effective design for an upper-extremity prosthetic arm, to do so we need to 
have better estimation and prediction of the required force for a particular task from the sEMG signal. 
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Motivation 
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Experimental Set-Up and Data Collection 
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Pre-Processing/Filteration 

Raw sEMG vs. Half-Gaussian filtered sEMG signal for ring finger Motor Point, Ring1 and Ring2 sensors. 



7 

Pre-Processing/Filteration 

Raw skeletal muscle force signal vs. Chebyshev type II filtered force signal (Interlink Electronics FSR 0.5”). 



8 

NLHW Model 
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Multiple Regression Model 

Multiple regression is regression with two or more independent predictors, here we can use 
more than one factor to make a prediction whereas in case of simple regression we have only 
one causal factor. 
 



•  The two modeling methods, a nonlinear Hammerstein-Wiener model and Multiple 
Regression model are not leak proof, so we propose an entropy based threshold 
approach, which is more robust and reliable in most of the practical and real-time 
scenarios. 

•  In this threshold based approach, where we make the actuator on when we have sEMG 
value above a certain threshold, e.g. 40-50 % of the maximum sEMG amplitude. 
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Entropy Based Threshold Approach 
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Results and Discussion 

Table 1: Nonlinear Wiener-Hammerstein Models with Best Model Fit Values for 
Ring Motor Point, Ring1 and Ring2 sEMG Signal. 
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Results and Discussion 

Nonlinear Hammerstein-Wiener Model Output, KIC Based Data Fusion Output, and Filtered Skeletal Muscle Force Signal. 
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Results and Discussion 

Multiple Regression Model Output and Filtered Skeletal Muscle Force Signal. 
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Results and Discussion 

Ring Finger Motor Point sEMG vs. Skeletal Muscle Force: A Threshold sEMG Value Based Approach. 
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Results and Discussion 

Table 2: Threshold Based Entropy Values for Ring Finger Motor Point sEMG and 
Force Signal. 



16 

Results and Discussion 

Table 3: Statistical Measures for Ring Finger Motor Point sEMG and Force Signal. 



1.  In this work we obtained models for skeletal muscle system, sEMG signal is considered as 
input and force signal as output. 

2.  Filtered sEMG and force signals are used for Nonlinear Hammerstein-Wiener Model, 
Multiple Regression Model and Threshold sEMG Value Based Approach. 

3.  Nonlinear Hammerstein-Wiener Model and Multiple Regression Model give good results 
for the measured data. 

4.  For real time scenarios and robust results we propose a Threshold sEMG Value Based 
Approach, where we make the actuator on when the sEMG amplitude is at certain level. 

5.  Future work will focus on more rigorous learning algorithms and sEMG from large number 
of sensors. Simulink model of the prosthetic hand will be used to present the results. 
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Conclusions and Future Works 
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